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Abstract: The results of shaking table tests from previous studies on a one-story, two-bay reinforced
concrete frame—exhibiting both shear and axial failures—were compared with nonlinear dynamic
analyses using simplified models intended to evaluate the collapse potential of older reinforced
concrete structures. To replicate the nonlinear behavior of columns, whether shear-critical or primarily
flexure-dominant, a one-component beam model was applied. This model features a linear elastic
element connected in series to a rigid plastic, linearly hardening spring at each end, representing a
concentrated plasticity component. To account for strength degradation through path-dependent
plasticity, a negative slope model as degradation was implemented, linking points at both shear
and axial failure. The shear failure points were determined through pushover analysis of shear-
critical columns using Phaethon software. Although the simplified model provided a reasonable
approximation of the overall frame response and lateral strength degradation, especially in terms
of drift, its reduced computational demands led to some discrepancies between the calculated and
measured shear forces and drifts during certain segments of the time-history response.

Keywords: nonlinear dynamic analysis; collapse; axial and shear failures; reinforced concrete
columns; one-component beam model

1. Introduction

Reinforced concrete buildings constructed before the implementation of modern
seismic design standards present a major global risk for earthquake safety. These older
structures are highly vulnerable to severe damage or even collapse during strong earth-
quakes, which has historically resulted in considerable loss of life. Many fatalities in past
earthquakes are directly linked to the collapse of such buildings. Since the introduction
of the capacity design concept in seismic codes in the 1980s, the safety disparity between
earthquake-resistant buildings and those built before 1980 has widened, heightening con-
cerns worldwide. Earthquakes such as those in Athens (1999), Turkey (1999), L’Aquila
(2009)—which the author personally witnessed while residing there—and the 2023 Turkey–
Syria earthquakes underscore the critical need for improved assessment and retrofitting of
older reinforced concrete structures. Over the past 20 years, extensive research and code
advancements have targeted this issue, as the detailing in these older buildings often falls
significantly short of current standards for earthquake-resistant design.

Reinforced concrete (RC) columns are crucial to a building’s overall performance, as
their failure can lead to extensive, disproportionate damage throughout the structure. The
behavior of RC columns under the combined effects of axial load, shear, and flexure has
been widely studied. For columns primarily exhibiting flexural behavior, sectional analysis
or a fiber model in a one-dimensional stress field can reasonably estimate both ultimate
strength and yielding deformation. However, when a column’s behavior is driven by shear
or shear and flexure, sectional analysis alone falls short, as shear forces generate stress
fields that extend through the member to its supports [1,2].

Recently, researchers have shown increased interest in the lateral load behavior of
columns, particularly regarding axial failure that can lead to building collapse [3,4]. Before
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specific design requirements were introduced in the 1970s, reinforced concrete building
frames in high-seismicity areas were built with detailing and proportions similar to those
designed mainly for gravity loads. In these structures, columns were not typically designed
to be stronger than beams, so column failure mechanisms are common in buildings from
that period, especially in areas without infill walls, such as soft-story structures like the
Imperial County Hospital, or buildings with window-framing columns, as seen in the Van
Nuys Holiday Inn [5,6]. Columns often featured widely spaced transverse reinforcement,
which contributed to failure modes involving shear or combined flexure–shear failure.
As shear failure advances, the degradation of the concrete core can reduce the column’s
capacity to carry axial loads. When this capacity declines, gravity loads must be redis-
tributed to adjacent structural elements. A sudden loss of axial capacity can trigger a
rapid, dynamic redistribution of internal forces within the frame, potentially leading to
progressive collapse. This type of structural response has been observed in numerous
strong earthquakes worldwide, including the Perachora Earthquake in Greece (1982), the
L’Aquila Earthquake in Italy (2009), and others [7].

One example of a member-based approach to modeling shear effects is the strut-
and-tie mechanism, which is used in the D-regions of beams and columns. Here, a 45◦

diagonal strut extends through the concrete member, covering a distance at least equal
to the member’s depth. Despite this, many design codes treat shear strength as a cross-
sectional property [8], though alternative approaches like strut-and-tie models [8–12] are
available, albeit less commonly used and often unfamiliar to many practitioners.

More advanced approaches, such as variable-angle strut-and-tie models, adjust the
angle of the strut based on the level of transverse reinforcement. For instance, Eurocode
2 (2004) [13] permits a strut angle between 22.5◦ and 45◦, with the specific angle varying
according to the required transverse reinforcement. A more detailed approach, as outlined
in AASHTO 2013 [10] and Model Code 2010 [9], is based on the Modified Compression Field
Theory (MCFT), developed by Vecchio and Collins (1986) [14], which is widely regarded as
the most comprehensive framework for understanding the shear behavior of reinforced
concrete members.

The most advanced seismic design and assessment techniques available today still rely
on some form of nonlinear analysis, whether static or dynamic. These analyses are typically
carried out using frame elements with differing degrees of approximation. The two primary
approaches used are lumped-plasticity models and distributed-inelasticity models.

Distributed-inelasticity elements allow for the direct integration of section response [15,16].
In this approach, fiber beam elements are especially effective for studying the behavior
of RC structures under reversed cyclic loading, as they accurately capture moment–axial
force (M-N) coupling and the interaction between concrete and steel within the section.
While many fiber beam–column elements have been developed to reliably represent axial
force and flexural effects, the interaction between normal and shear forces is more complex,
and only a limited number of modeling strategies have been fully implemented to address
this [17].

In contrast, lumped-plasticity elements require parameter calibration based on the
response of an actual or ideal frame element under simplified loading conditions. This
calibration is crucial because the behavior of concentrated plasticity elements depends
on the moment–rotation relationship of their components. For an actual frame element,
the end moment–rotation relationship is determined by integrating the section response,
similar to the process used in a fiber beam element [15].

To model the behavior of prismatic members, where normal stresses and strains
vary across a cross-section depth in response to flexural moment demands (maintaining
plane sections), Vecchio and Collins (1988) [18] introduced the MCFT within a layered
analysis framework, commonly known as a fiber model [19]. In this method, kinematic
assumptions for flexure and shear (represented by sectional curvature and shear strain)
drive the algorithm, while principal stress and strain orientations are calculated at multiple
layers across the member’s depth. Nonlinear constitutive material laws, defining uniaxial
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stress–strain behavior in the principal directions, are used to determine the stress state and
ensure equilibrium of the stress resultants. Here, concrete fibers are treated as biaxially
stressed elements within the cross-section, with their in-plane stresses analyzed through
MCFT. This approach was later refined to enhance the accuracy of shear stress distribution
across the section. These advanced formulations were implemented in Response 2000 [20],
a nonlinear analysis program for structural members.

When applying the MCFT to seismic assessments, several modifications are required
to address the unique demands of cyclic loading. One challenge is that most experimental
data supporting the MCFT are based on tests with monotonic loading, offering limited
understanding of the model’s behavior under cyclic displacement reversals and related
degradation mechanisms. Additionally, the method assumes uniformly distributed rein-
forcement, which does not adequately represent older structures with sparse reinforcement.
Another limitation is the absence of explicit modeling for bond-slip degradation effects on
the shear behavior of RC members.

This limitation, along with the distinctive behavior of lightly reinforced concrete
columns where shear and flexure interact, was recently investigated by developing a
fiber beam model grounded in the MCFT [21]. This theory was applied using an ex-
act Timoshenko fiber element that also accounts for the substantial effect of tensile rein-
forcement pull-out due to anchorage or short lap splices on the column’s overall lateral
drift. These capabilities were incorporated into a standalone Windows program named
“Phaethon” [21], with a user interface developed in C++ (Version 1.0). The program aids
engineers in analyzing substandard reinforced concrete columns with both rectangular and
circular cross-sections.

Utilizing the moment–rotation envelope results from a cantilever shear-critical column
analyzed using Phaethon software (Version 1.0), one can model an inelastic frame structure
subjected to shear, axial, or pull-out failures by placing a rigid plastic spring at the expected
shear failure location. This approach also accounts for the impact of anchorage or lap-splice
pull-out slip on total drift and incorporates a negative degradation slope effect. The slope of
the degradation links the moment–rotation envelope point where shear failure occurs to the
axial failure point, beyond which the column cannot sustain its gravity loads. The section of
the member between the two rigid plastic springs remains perfectly elastic. Giberson [22,23]
generalized the original one-component model. A significant benefit of this method is
that inelastic deformation at the ends of the member is determined solely by the moment
applied there, allowing for any moment–rotation hysteretic model to be assigned to the
spring. While this straightforward model has received some reasonable criticism, it is
anticipated to perform effectively for relatively low-rise frame structures, particularly
where the inflection point of a reinforced concrete column is situated near mid-height.

The main objective of Performance-Based Earthquake Engineering is to determine an
“acceptable” probability of collapse. Collapse should be assessed as accurately as possible
using nonlinear dynamic analysis. A thorough set of guidelines will provide a framework
for tackling the complexities associated with nonlinear softening responses during sig-
nificant displacements and deformations, thereby facilitating the acceptance of nonlinear
response analyses in professional practice [24–31]. The introduction of straightforward yet
effective column models, such as those presented in this study, which incorporate localized
effects like shear and anchorage or lap-splice slip within a coherent element formulation,
will help mitigate issues of non-convergence and reduce computational time.

This paper contributes to the field of seismic assessment of older RC frames through
nonlinear dynamic analyses in the following ways, as Figure 1 also depicts:

• The formulation of path-dependent one-component element response with strength
degradation due to shear and axial failures is described in detail.

• Self-developed MATLAB [32] code is created in order to run a nonlinear dynamic
analysis on one-story, two-bay reinforced concrete frames experiencing both shear and
axial failures, which were simulated with the above formulated beam element.
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• The proposed analytical model can also address the stress state of a column under
full cyclic load reversals, accounting for both flexure- and shear-dominated response
conditions in RC columns, while also considering the contribution of anchorage or
lap-splice pull-out slip to the total drift.

• A reduced computational model for prediction of dynamic response of old reinforced
concrete structures under seismic loads is developed based on the moment–rotation en-
velope results from cantilever shear-critical columns analyzed by Phaethon Windows
software (Version 1.0).

• Inelastic frame structures experiencing shear, axial, or pull-out failures are modeled
in this study by placing a rigid plastic spring at the location where shear failure is
predicted considering the contribution of anchorage and pull-out slip in the total
drift and applying a degradation slope. The negative slope connects the point on the
moment–rotation envelope where shear failure occurs to the point of axial failure.

• The advantage of the proposed approach is that the inelastic deformation at the
member ends depends solely on the moment applied at the end, allowing any moment–
rotation hysteretic model to be assigned to the spring, hence simplifying the analytical
and numerical modeling.
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Figure 1. Graphical research framework of this study (∆shear cantilever lateral displacement due to
shear mechanism, ∆slipcantilever lateral displacement due to pull-out slip of anchorage or lap splice,
∆flex cantilever lateral displacement due to flexure, ∆tot total lateral displacement, lr yield penetration
length in the anchorage, fby local bond strength of the anchorage, lp plastic hinge length, γe elastic
shear strain, γp plastic shear strain. θ cantilever lateral rotation, θslip cantilever lateral rotation due to
pull-out slip, VR shear strength, Ls shear span, d column section effective depth, V seismic shear force,
∆ lateral displacement, ∆slateral displacement at shear failure, ∆alateral displacement at axial failure).
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This study is organized as follows: Following the introduction, which outlines the
objectives of this research paper, Section 2 details the formulation of a path-dependent,
one-component element response with strength degradation. Section 3 provides a compre-
hensive comparison of the proposed analytical model with experimental results found in
the literature. Lastly, Section 4 discusses the output results, while Section 5 presents the
conclusions and suggestions for future work.

2. Materials and Methods

It is valuable to examine one-component beam model formulation in greater detail,
as it exemplifies a category of elements that rely on assumptions about internal force
distribution. These elements are crucial in contemporary earthquake engineering analysis,
as they accurately represent the force distribution within a member and lead to a reliable
numerical implementation.

2.1. Path-Dependent Element Response with Strength Degradation

For a linear elastic, perfectly plastic beam with non-smooth multi-surface plastic-
ity, the equilibrium, compatibility, and constitutive relations of the elastic component,
along with the yield function, are provided in the following equations as illustrated in
Figure 2 (p denotes plastic and e denotes elastic; Mp is the plastic moment and k is the
stiffness) [15,33–35]:

Equilibrium: q = qe = qp (1)

Compatibility: v =ve + vp with vp =

 0
vp2
vp3

 (2)

Constitutive relation of elastic component:
q = ke·ve = ke·

(
v − vp

) (3)

Yield function : f1(q2, q3) = |q2| − Mpi ≤ 0 for node i (4)

Yield function : f2(q2, q3) = |q3| − Mpj ≤ 0 for node j (5)
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Figure 2. Beam (a) displacements and (b) forces in global, local, and basic reference systems and
(c) one-component beam model.

There are now two independent yield surfaces, one for node i and one for node j.
These can be expressed more concisely by using the relationship |x| = sign(x)x:



Constr. Mater. 2024, 4 709

f1(q2, q3) = sign(q2)(q2)− Mpi ≤ 0 (6)

f2(q2, q3) = sign(q3)(q3)− Mpj ≤ 0 (7)

Introducing the derivative:

∂ f1

∂q
=

 0
sign(q2)

0

 = n2 (8)

∂ f2

∂q
=

 0
0

sign(q3)

 = n3 (9)

Using the definitions n =
[
n2 n3

]
and ∂ f

∂q = nT, the yield conditions can be reformulated:

f (q2, q3) = nTq − qpl ≤ 0 with qpl =

 0
Mpi
Mpj

 (10)

The flow rule for non-smooth plasticity is provided below:

Flow rule:
.
vp = n2β2 + n3β3 = nβ iff f (q2, q3) = nTq − qpl = 0 (11)

Kuhn–Tucker conditions: βk ≥ 0 and fk ≤ 0 and βk fk = 0 ≤ 0 for k = 2, 3 (12)

Consistency condition: βk
.
fk = 0 for k = 2, 3 (13)

The plastic flow βk can be defined from the consistency condition βk
.
fk = 0 for k = 2,3

.
f = n·

.
q = n·ke

( .
v − .

vp
)

(14)

Substituting the flow rule with
.

vp = nβ:

.
f =

.
n·ke

( .
v − nβ

)
(15)

According to the consistency condition, βk > 0 only if
.
fk = 0 for k = 2,3; α stands for

active node, i.e., for a node with
.
fa = 0:

βa =

(
nT

a ke
.
v
)

(nT
a kena)

(16)

The tangent modulus during plastic flow is expressed as:

k = ke −
kenanT

a ke

(nT
a kena)

(17)

The summary of multi-surface plasticity for a linear elastic, perfectly plastic beam is
presented below (cyclic rules similar to bilinear model):

1. Additive deformation decomposition v =ve + vp
2. Force–deformation relation q = ke·ve = ke·

(
v − vp

)
3. Yield condition f (q2, q3) = nTq − qpl ≤ 0 with n =

[
n2 n3

]
4. Flow rule

.
vp = n2β2 + n3β3 = nβ iff f (q2, q3) = nTq − qpl = 0

5. Kuhn–Tucker conditions βk ≥ 0 and fk ≤ 0 and βk fk = 0 for k = 2,3

6. Consistency condition βk
.
fk = 0 for k = 2,3
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In order for the kinematic hardening Hk to be included, Equations (16) and (17) are
rewritten as follows:

βa =

(
nT

a ke
.
v
)

(nT
a (ke + Hk) na)

(18)

k = ke −
kenanT

a ke

nT
a (ke + Hk) na

(19)

The degradation slope Hk equals the negative slope connecting the point of the re-
sponse at shear failure to the point at axial failure of a shear-critical RC column. For
flexure-dominant elements, the kinematic hardening can have a positive value or could
be omitted.

To identify the shear failure point of a shear-critical column, a pushover analysis
of a single cantilever column is conducted using Phaethon software. For this analysis,
the sectional model in Phaethon, which can be either rectangular or circular based on
the MCFT, is employed alongside the footing anchorage model developed by Tastani
and Pantazopoulou (2013) [36] or the lap-splice model proposed by Megalooikonomou
(2024) [21], all integrated within Phaethon Windows software. A lateral point load that
increases progressively is applied at the tip of the cantilever. The entire height of the
cantilever column is represented by a single exact Timoshenko force-based fiber element,
which accounts for shear effects in adjusting the principal directions throughout the fiber
section depth, with the number of Gauss–Lobatto integration points determined by the
user. Additionally, the user specifies the analysis step size for the lateral load and the
total number of steps leading up to the maximum load, which indicates shear failure.
Since the fiber approach utilizing MCFT [20] does not accurately depict the descending
behavior of shear-critical columns, Phaethon implements a load-controlled procedure that
maintains a constant load-step size while updating only the stiffness. The shear failure
point is indicated by the last converged step of the incremental algorithm. It is important to
recognize that, in practice, the response of a shear-critical column exhibits a descending
branch after reaching peak strength, indicating brittle behavior. However, the embedded
algorithm simulates only up to the strength attainment and shear failure point. Beyond the
maximum load, the descending part of the capacity curve is illustrated by a line connecting
the peak load point (shear failure) to the point of axial failure, which is defined in terms of
drift according to Elwood and Moehle (2005) [4], with 20% of the peak load regarded as the
residual load at axial failure. This also establishes the negative degradation slope, Hk, of
the moment–rotation envelope for the shear-critical column, which will be utilized in the
subsequent section of the nonlinear time-history analysis.

The following section of the results of this study will present a comparison between
the results of shaking table tests conducted on a one-story reinforced concrete frame (height:
1628 mm) with two bays (each bay measuring 1830 mm), which experienced both shear and
axial failures [37,38], and nonlinear dynamic analyses performed with simplified models
aimed at evaluating the collapse of older reinforced concrete structures. To replicate the
nonlinear behavior of the columns—both those susceptible to shear failure and those more
prone to flexural failure—the one-component beam model discussed in this section will
be employed. Before presenting the correlation with the experimental results, however, a
short description of the experimental setup from the literature is necessary.

2.2. Experimental Test Setup

Shake table tests were conducted [37,38] to examine the dynamics of shear and axial
load failures in reinforced concrete columns when an alternative load path is available
for redistributing loads. The test setup included three columns fixed at their bases and
connected by a beam at the top. The central column, which had a square cross-section and
widely spaced transverse reinforcement, was prone to shear failure, leading to subsequent
axial load failure during the tests. As the central column failed, shear and axial loads were
redistributed to the adjacent ductile circular columns. Two test specimens were built and
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assessed. The first specimen supported a mass that induced axial load stresses in the column
comparable to those expected in a seven-story building. In the second specimen, hydraulic
jacks were used to increase the axial load on the central column, thereby increasing the
demand for axial load redistribution as the column began to fail. Both specimens were
subjected to one horizontal component of a scaled ground motion recorded during the
1985 earthquake in Chile. A comparison of the results from both specimens indicated that
the behavior of the frame was influenced by the initial axial stress of the center column.
The specimen with the lower axial load experienced shear failure while retaining most of
its initial axial load. Conversely, the specimen with the higher axial load showed shear
failure of the central column at lower drift levels and earlier in the ground motion record,
resulting in axial failure of the central column. Displacement data recorded just after the
onset of axial failure indicate two mechanisms contributing to the shortening of the center
column during axial failure: first, large pulses that cause a sudden increase in vertical
displacement after reaching a critical drift, and second, smaller oscillations that appear to
“grind down” the shear failure plane. Additionally, dynamic amplification of axial loads
transferred from the center column to the outer columns was observed during the axial
failure of the central column.

A total mass of 31.000 kg at each planar-frame specimen was supported at the top
by a beam that was 1.5 m wide. The columns were based on footings connected to multi-
axis load cells (Figure 3a). The center column was constructed with minimal transverse
reinforcement (Ash/bs = 0.18%, where Ash is the area of transverse reinforcement parallel
to the applied shear, b is the width of the column—230 mm by 230 mm—with 4 #4 corner
bars and 4 #5 center bars with a yield strength of 479.18 MPa, and s is the spacing of the
transverse reinforcement, which consisted of W2.9 wire spaced at 152 mm with a tensile
strength of 717 MPa, featuring 90◦ hooks). The outer columns had a circular cross-section
with a diameter of 255 mm and were reinforced with closely spaced spirals (#3 spirals at
50 mm). The acceleration values recorded on the shake table during testing will be utilized
in the numerical simulation in the following section. The only distinction between the two
specimens was the initial axial load applied to the center column. For Specimen 1, the axial
load on the center column was 0.10 Agfc, whereas for Specimen 2, it was 0.24 Agfc (where
Ag represents the gross cross-sectional area and fc is the measured concrete strength, which
was 24.27 MPa). The axial load in Specimen 2 was increased to investigate the effect of
axial load on shear and axial failures. This higher load was achieved by post-tensioning
the specimen to the shaking table with pneumatic jacks, which helped prevent undesired
changes in the vibration period due to the added reactive mass.

Constr. Mater. 2024, 5, FOR PEER REVIEW 9 
 

 

 

Figure 3. (a) Specimen 2 of shake table test [37,38]. (b) Simplified numerical model implemented in 

MATLAB 2024b. 

3. Results 

3.1. Pushover Analysis of Center Shear-Critical RC Cantilever Column 

In this section, the center column of Specimen 2 from the previously described shake 

table test will be analyzed using pushover analysis with Phaethon software [21]. Table 1 

provides detailed information about the properties of the column under investigation. 

For each point load applied at the tip of the cantilever, the corresponding shear force 

at specified sections of the column (integration points) aligns with the applied load, creat-

ing a constant shear force diagram. The flexural moment at the base of the column, along 

with the moment distribution, is derived from the lateral load, resulting in a steady shear 

force. The concentric axial load (whether tensile or compressive) applied at the tip of the 

cantilever remains constant throughout the pushover analysis and along the length of the 

cantilever, ensuring that every section of the column experiences the same axial force as 

that at the tip. 

By employing this method, the resisting section forces should converge to the previ-

ously determined section forces based on the moment, shear, and axial load diagrams of 

the cantilever column under a constant axial load and progressively increasing lateral 

point loads at the tip. Once the section forces converge (using the Newton–Raphson iter-

ation algorithm) along the cantilever column to match the correct values from the force 

diagrams resulting from the applied horizontal and axial loads at the tip, the axial defor-

mation, curvature, and shear strain for each section can be calculated. 

By integrating the curvatures along the shear span of the cantilever column, the rota-

tion due to flexure is determined, which can be easily converted into lateral displacement 

due to flexure by multiplying it by the shear span length. Similarly, integrating the shear 

strains across multiple sections (with positions determined using the Gauss–Lobatto inte-

gration scheme) along the cantilever column’s length (integration points) provides the lat-

eral displacement caused by the shear distortion mechanism of the column. Finally, the 

rotation and displacement resulting from the pull-out of the tensile reinforcement are de-

termined using the theoretical framework outlined in [36]. These contributions from flex-

ure, shear, and anchorage are then combined to determine the total lateral displacement 

of the cantilever column at each lateral load increment. This process continues until reach-

ing the maximum lateral load (point of shear failure), establishing the column’s capacity 

Figure 3. (a) Specimen 2 of shake table test [37,38]. (b) Simplified numerical model implemented in
MATLAB 2024b.



Constr. Mater. 2024, 4 712

During testing, the center column of Specimen 1 exhibited a decrease in lateral-load
capacity, likely due to shear failure, but did not experience axial failure. In contrast,
Specimen 2′s center column underwent both shear and axial load failures. Consequently,
Specimen 2 will be used in the numerical simulation to correlate with the experimental
results. For more information about the specimens, test setup, and experimental outcomes,
please refer to [37,38].

3. Results
3.1. Pushover Analysis of Center Shear-Critical RC Cantilever Column

In this section, the center column of Specimen 2 from the previously described shake
table test will be analyzed using pushover analysis with Phaethon software [21]. Table 1
provides detailed information about the properties of the column under investigation.

Table 1. Details of central shear-critical RC columns of Specimen 2 (units: mm, MPa, kN).

Case Axial Load
(kN)

Width (mm)–
Depth (mm)

Shear Span
(mm)–

Straight
Anchorage

Length (mm)

Clear
Cover
(mm)

Concrete
Strength

(MPa)

Number–
Diameter

(mm)–Reinforcing
Ratio of

Longitudinal Bars

Yielding
Strength
of Long.

Bars
(MPa)

Ultimate
Strength

(MPa)–Spacing
(mm)–Diameter
(mm)–Ratio of
Transv. Reinf.

Elwood and
Moehle

[37,38]–(Spec.
2–Center
Column)

308.132 230
230

814
298 25.4 24.27

4 and 4
12.7 and 15.875

0.0245
479.18

717
152
4.9

0.00236

For each point load applied at the tip of the cantilever, the corresponding shear force at
specified sections of the column (integration points) aligns with the applied load, creating
a constant shear force diagram. The flexural moment at the base of the column, along
with the moment distribution, is derived from the lateral load, resulting in a steady shear
force. The concentric axial load (whether tensile or compressive) applied at the tip of the
cantilever remains constant throughout the pushover analysis and along the length of the
cantilever, ensuring that every section of the column experiences the same axial force as
that at the tip.

By employing this method, the resisting section forces should converge to the previ-
ously determined section forces based on the moment, shear, and axial load diagrams of
the cantilever column under a constant axial load and progressively increasing lateral point
loads at the tip. Once the section forces converge (using the Newton–Raphson iteration
algorithm) along the cantilever column to match the correct values from the force diagrams
resulting from the applied horizontal and axial loads at the tip, the axial deformation,
curvature, and shear strain for each section can be calculated.

By integrating the curvatures along the shear span of the cantilever column, the rota-
tion due to flexure is determined, which can be easily converted into lateral displacement
due to flexure by multiplying it by the shear span length. Similarly, integrating the shear
strains across multiple sections (with positions determined using the Gauss–Lobatto in-
tegration scheme) along the cantilever column’s length (integration points) provides the
lateral displacement caused by the shear distortion mechanism of the column. Finally, the
rotation and displacement resulting from the pull-out of the tensile reinforcement are deter-
mined using the theoretical framework outlined in [36]. These contributions from flexure,
shear, and anchorage are then combined to determine the total lateral displacement of the
cantilever column at each lateral load increment. This process continues until reaching the
maximum lateral load (point of shear failure), establishing the column’s capacity curve. As
already described, beyond the maximum load, the descending part of the capacity curve is
depicted by a line connecting the peak load point (corresponding to shear failure) to the
point of axial failure, as described by Elwood and Moehle (2005) [4]. At this point, 20%
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of the peak load is considered as the residual load during axial failure. This also defines
the negative degradation slope behavior of the moment–rotation envelope for the shear-
critical column, which will be used in the next section for nonlinear time-history analysis.
Figures 4 and 5 present the results of the shear-critical center column of Figure 3 under
study. According to Figure 4, the point of shear failure defined by Phaethon software for
the cantilever center shear-critical column of Specimen 2 is Vsh = 80 kN and ∆sh = 7.27 mm.
The axial failure event is also depicted in the same figure. Thus, the negative degradation
slope in terms of moment–rotation can be defined.
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Figure 4. Capacity curve of center shear-critical column of Specimen 2 and lateral displacement
contributions for each step of the pushover analysis (16 total pushover steps of 5 kN) [This is a
screenshot from Phaethon Windows software’s user interface].
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3.2. Nonlinear Time-History Analysis of Specimen 2

A MATLAB code [32] was developed for the nonlinear time-history analysis of the
already introduced Specimen 2 by Elwood and Moehle [37,38]. The model of the 2D shear-
critical RC frame fixed at the base can be seen in Figure 3b. All columns were modeled by
employing the one-component beam model of Section 2. To the center column was applied,
as already described, the negative degradation slope defined in the previous section, along
with its secant stiffness’ elastic properties until the point of shear failure. For the side
columns, the experimental reported yielding moment was employed, along with its elastic
stiffness. Since the side columns sustain fluctuating axial load during testing, a mean
yielding moment value was introduced. The horizontal beams (Figure 3b) were modeled
as 2D linear elastic beam elements with elastic properties.

In the case of earthquake excitation, the support degrees of freedom (DOFs) are
assumed to move together following a specified ground acceleration history in the global
coordinate system. The key step is to express the total acceleration relative to a fixed
reference frame as the sum of the acceleration of the support DOFs and the additional
acceleration of the free DOFs relative to the supports [39].

The central difference time integration method algorithm is used to solve the equations
of motion. The advantage of the central difference method is that the stiffness matrix does
not rely on the static stiffness matrix, which may change at each time step under nonlinear
material behavior, requiring re-assembly and re-triangularization. In contrast, with the
central difference method, the effective stiffness remains constant, provided the damping
stiffness matrix is constant, as is commonly assumed with Rayleigh damping, which is
also adopted in this study (damping proportional to mass and stiffness) [39]. Additionally,
this method does not require iterations within each time step, unlike the implicit time
integration method. However, the central difference method is only conditionally stable,
meaning it requires a small time step for accurate integration. The introduced ground
motion is the recorded acceleration values on the shake table during testing of Specimen
2. The equivalent viscous damping was set at 2% of critical damping for the fundamental
mode of the shear-critical RC frame. The masses were lumped equally at the horizontal
beams’ nodes and an additional vertical load was applied at the top node of the center
column [0.24Agfc (where Ag (230 × 230 mm2) is the gross cross-sectional area and fc is the
measured concrete strength (24.27 MPa)].

Figure 6 depicts the numerical and experimental nonlinear time-history response.
It can be seen that there are similar value ranges in the response; however, the reduced
computational cost of the modeling approach led to some deviations between the
calculated and measured shear forces and drifts during portions of the time-history
response. Regarding drift, the permanent damage drift at the end of the time-history has
almost the same value. Base shear and center column shear forces are comparable, but
once the rigid plastic hardening springs of the one-component model are triggered, then
there is no fluctuation in the sustained envelope shear forces apart from the negative
degradation slope response as would happen by employing distributed inelasticity
beam elements.

In order to clarify the level of accuracy of this simplified approach, the absolute error of
the model’s response compared to the experiment for Specimen 2 is defined in Figure 7, and
also the same error definition was included for the detailed and more advanced numerical
modeling with limit state models combined with distributed inelasticity beam models by
Elwood and Moehle [38]. The absolute error is defined as the subtraction of the absolute
value of the experimental response from the absolute value of the numerical response,
since for the overall practical seismic assessment purposes, monotonic conditions’ rules
are usually applied. It can be seen that despite the reduced computational effort, the
simplified approach in terms of drifts is comparable and, especially for the permanent drift
damage (which is of special interest), better than the detailed approach. In terms of shear
forces, the detailed approach is better since, as already mentioned, once the rigid plastic
hardening springs of the one-component model are triggered, then there is no fluctuation
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in the sustained envelope shear forces apart from the degradation slope response as would
happen by employing distributed inelasticity beam elements. Moreover, the fluctuation of
the axial load and its interaction with the moment at the side circular columns is not taken
into account as happens with the detailed approach.
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Figure 7. Absolute error time-history responses in terms of drift, base shear, and center column shear
of Specimen 2.

The above remarks are confirmed also by Figure 8. The corresponding time responses
between the numerical model and experimental test do not coincide at every time step.
The effective stiffness and strength degradation in the central shear-critical column is well
captured. Moreover, it can be seen that this simplified numerical model cannot repre-
sent the degradation of loading and unloading stiffnesses with increasing displacement
amplitude reversals. The employed moment–rotation envelopes below horizontal beams
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of the columns of Specimen 2, both shear-critical and flexure-dominant, can be seen in
Figures 9 and 10. Considering the brittle specimen response and the low computational
cost for this simplified model approach for collapse modeling, the results are acceptable.
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4. Discussion

During an earthquake, columns can experience a wide range of loading histories,
which may include a single large pulse or several smaller-amplitude cycles. These cycles
can sometimes result in shear failure or even collapse, where the column loses its ability
to support gravity loads. Previous research [1,2] has shown that such collapse cannot be
explained by a simple combination of shear force and axial load. Instead, it is governed by
an interaction envelope that depends on both the loading history and the peak deformation
exerted on the column (maximum drift demand).

To understand how the loading history affects a column’s response, it is important to
note that structural members undergoing lateral displacement reversals tend to lengthen
due to the accumulation of permanent tensile strains in the longitudinal reinforcement
crossing diagonal shear cracks. As displacement cycles increase in amplitude, the cracks
widen. This is depicted in the axial stress–strain diagram of the reinforcement after yielding,
where permanent strains are biased in tension due to the neutral axis shifting towards the
compression side of the member’s cross-section after cracking. Axial load plays a key role
in this process, as it helps keep the cracks partially closed, thereby delaying the elongation
and ratcheting of the column.

Additionally, research [1,2] shows that increasing the number of cycles beyond the
yield displacement can reduce a column’s drift capacity at shear failure. One of the goals of
this research is to better understand these effects and develop simplified tools to identify
the failure characteristics at the loss of axial load-bearing capacity, as well as the impact of
drift demand on the column’s deformation capacity.

As already mentioned, collapse should be quantified as accurately as possible through
nonlinear dynamic analysis. A comprehensive set of guidelines will serve as a foundation
for addressing the complexities of nonlinear softening responses under large displacements
and deformations, helping to promote the acceptance of nonlinear response analyses in
professional practice. The introduction of simple but effective column models, like those
presented in this study, which account for localized effects such as shear and anchorage or
lap-splice slip within a consistent element formulation, will reduce non-convergence issues
and computational time. The correlation of the proposed model with the experimental
results produces acceptable results, especially in terms of drifts and permanent damage,
and the model succeeds in reducing the computational effort.
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Finally, it should be noted that the goal of this study is to simplify the assessment of the
collapse of RC frame structures, so the presented methodology could be used in large-area-
scale seismic assessment. It is not intended to be a substitute for the advanced methods
introduced in the literature review and, in a way, as for example with MCFT, it is based
also on its estimates through Phaethon Windows software. The intended improvement lies
upon its simplifications without losing reasonability in its results.

5. Conclusions

The one-component beam model formulation exemplifies a category of elements
that rely on assumptions about internal force distribution. These elements are crucial
in contemporary earthquake engineering analysis, as they accurately represent the force
distribution within a member and lead to a reliable numerical implementation. Using
the moment–rotation envelope results from cantilever shear-critical columns analyzed
by Phaethon software, an inelastic frame structure experiencing shear, axial, or pull-out
failures can be modeled by placing a rigid plastic spring at the location where shear failure
is anticipated, considering also the contribution of anchorage or lap-splice pull-out slip in
the total drift and applying a negative degradation slope. The slope of the degradation
connects the point on the moment–rotation envelope where shear failure occurs to the
point of axial failure, beyond which the column can no longer support its gravity loads.
The part of the member between the two rigid plastic springs remains perfectly elastic. A
key advantage of this approach is that inelastic deformation at the member ends depends
solely on the moment applied at the end, allowing any moment–rotation hysteretic model
to be assigned to the spring. The results of shaking table tests on a one-story, two-bay
reinforced concrete frame experiencing both shear and axial failures were compared after
creating self-developed MATLAB code [32] running nonlinear dynamic analyses and
implementing this one-component beam model for columns prone to shear failure, but
also including those with more flexure-dominant behavior under cyclic reversals. While
the simplified model yielded reasonable predictions of the overall frame response and
lateral strength degradation, the reduced computational cost of the modeling approach led
to some deviations between the calculated and measured shear forces and drifts during
portions of the time-history response. It can be seen that despite the reduced computational
effort, the simplified approach in terms of drifts is comparable to a more detailed approach
from the literature and, especially for the permanent drift damage (which is of special
interest), better than the detailed approach. In terms of shear forces, the detailed approach
is better since once the rigid plastic hardening springs of the one-component model are
triggered, there is no fluctuation in the sustained envelope shear forces apart from the
degradation slope response as would happen by employing distributed inelasticity beam
elements. Moreover, the fluctuation of the axial load and its interaction with the moment at
the side circular columns is not taken into account as happens with this detailed approach.
Based on the research included in this paper, a future goal is to implement the proposed
element into commercial software for larger-scale nonlinear dynamic analyses of real RC
structures. In this direction, a possible improvement is the inclusion of the aspects of
smooth and/or corroded steel bars for seismic assessment of old-type RC frames. Finally,
a further validation of the proposed model with larger shake table experiments would
confirm its acceptance and robustness.
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