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Abstract

Early warning of structural damage from induced seismic events requires rapid and reliable
ground motion forecasting. This study presents a novel real-time framework that couples a
deep learning approach with structural fragility assessment to generate immediate damage
alerts following the onset of seismic shaking. Long Short-Term Memory (LSTM) neural
networks are employed to predict full S-wave accelerograms from initial P-wave inputs,
trained and tested on accelerometric records from induced seismicity scenarios. The
predicted S-wave motion is then used as input for a suite of fragility curves in real time
to estimate the probability of structural damage for masonry buildings typical in rural
areas of geothermal platforms. The proposed method captures both the temporal evolution
of shaking and the structural response potential, offering critical seconds of lead time
for automated decision-making systems. Results demonstrate high predictive accuracy
of the LSTM model and effective early classification of structural risk. This integrated
system provides a practical tool for early warning or rapid response in regions experiencing
anthropogenic seismicity, such as those affected by geothermal operations.

Keywords: LSTM networks; supervised machine learning; S-wave accelerograms; P-wave
signals; fragility curves; induced seismicity; geothermal operations; masonry

1. Introduction

Human-induced earthquakes represent a critical challenge, with implications for
industries including geothermal energy, oil and gas, water management, mining, and
waste disposal. Ongoing research focuses on global monitoring efforts, documenting case
studies, advancing monitoring technologies, uncovering the underlying physical processes,
improving forecasting with machine learning (ML) techniques, mitigating associated risks,
estimating the maximum potential earthquake magnitude, and evaluating both impacts
and stakeholder perspectives [1,2].

When an earthquake rupture is triggered, an earthquake early warning (EEW) or
rapid response system can issue alerts that provide from a few seconds up to tens of
seconds of lead time before damaging seismic waves arrive. Regional EEW methods
estimate the earthquake’s magnitude and location using data from multiple seismic stations,
whereas on-site EEW methods assess intensity or identify damaging earthquakes using
data from a single station. Both regional (e.g., [3—6]) and on-site (e.g., [7-9]) approaches
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have successfully issued alerts during major earthquakes. In some cases, on-site methods
have achieved longer lead times for regions located close to the epicenter (e.g., [8,9]). More
recently, many EEW systems have adopted hybrid approaches that combine features of
both techniques (e.g., [10-12]). The development and performance of these EEW strategies
and systems have been summarized in several recent review papers (e.g., [13-15]).

In order to predict seismic intensity [peak ground acceleration (PGA) and peak ground
velocity (PGV)], during the earliest stage of seismic-wave detection, artificial intelligence
(AI) techniques have increasingly been applied, particularly in on-site EEW. Typically,
several P-wave features are extracted from the initial waveforms after triggering and then
used as input for prediction models built with AI methods. For example, the integration
of the absolute values of acceleration, velocity, and displacement time histories—which
provide a simplified description of waveform envelopes—has been applied in multilayer
feedforward neural networks [16]. Similarly, features such as effective predominant period,
cumulative absolute velocity, squared velocity integral, peak acceleration, peak velocity, and
peak displacement have been used as inputs in models based on support vector regression
(SVR) [17]. However, these approaches typically use only a subset of P-wave features,
which may lead to the loss of important underlying waveform information. Moreover,
new prediction models must be trained for different P-wave time-window lengths, with a
common choice being around 3 s. These methods also neglect temporal variations within the
P-waves, relying instead on aggregated values, thereby ignoring sequential characteristics
in the data. Hsu and Huang et al. (2021) [18] used a deep convolutional neural network
(CNN) to automatically extract informative features from P-wave recordings at a single
station, enabling successful PGA prediction without significant information loss. Similarly,
Chiang et al. (2022) [19] applied CNNs to extract initial P-wave features from a single
station to determine whether the maximum PGA would exceed a predefined threshold.
Fayaz and Galasso (2022) [20] developed a single-station approach using a deep neural
network combined with a variational autoencoder to estimate acceleration response spectra,
incorporating site characteristics and seven intensity measures. Jozinovic et al. (2020) [21]
utilized a 10 s window of raw waveform data from multiple stations, starting at the
earthquake origin time, along with a CNN, to predict PGA at distant stations that had not
yet recorded peak shaking. More recently, Munchmeyer et al. (2021) [22] proposed a deep
learning framework combining CNNSs and transformer networks to process raw waveform
data from an arbitrary number of stations at arbitrary locations, enabling predictions of
both earthquake magnitude and location [23].

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network
(RNN), establish connections between past and present inputs. By selectively retaining
information from previous time steps, the network incorporates it as additional input
at the current step. This ability to capture temporal dependencies makes LSTM models
highly effective for sequential data tasks, such as speech recognition [24], stock price
prediction [25], and short-term traffic forecasting [26]. Building on this capability, Wang
et al. (2020) [27] developed an LSTM-based neural network for on-site EEW.

To enable rapid forecasting of expected damage (or performance), appropriate fragility
curves derived through probabilistic methods are essential. Using these performance
levels, a tailored rapid damage forecasting system can be developed [28]. Such a system
issues alerts based on predefined ground-motion thresholds, while accounting for the
anticipated performance of one or more specific structures. Based on Figure 1, Long
Short-Term Memory (LSTM) neural networks are utilized to forecast complete S-wave
accelerograms based on initial P-wave recordings, with training and validation conducted
using accelerometric data from induced seismicity events. The resulting S-wave predictions
are subsequently fed into a set of fragility curves in real time based on Peak Ground
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Acceleration (PGA) values to assess the likelihood of structural damage for masonry
buildings commonly found in rural geothermal areas. This approach effectively captures
both the temporal development of ground shaking and the potential structural response,
providing possible crucial lead time for automated decision-making systems.
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Figure 1. Graphical research framework of this study.

This paper has the following contributions to the research area of ML methods in
earthquake engineering:

e Integrated real-time framework: Combines LSTM-based seismic wave prediction with
structural fragility analysis to provide immediate, actionable damage alerts.

e Advanced temporal modeling: Uses initial P-wave data to accurately forecast full
S-wave accelerograms, capturing nonlinear ground motion evolution.

e Rapid, validated risk estimation: Demonstrates high predictive accuracy and effec-
tive early classification of structural damage, offering possible crucial lead time for
automated decision-making in induced seismicity scenarios.

The structure of this study is the following: after the introduction, which describes
the initiatives of this research paper, the employed data and the performed methodology
are described in Section 2. The steps of the performed supervised ML method in Python
programming language (Version 3.12) and its output results are provided in Sections 2 and 3.
Finally, the discussion of the latter results is presented in Section 4, while the conclusions
and future work are presented in Section 5.

2. Materials and Methods
2.1. Induced Ground Motion Database

The Pacific Earthquake Engineering Research Center (PEER) [29] hosts a web-based
ground motion database that enables users to search, select, and download ground motion
records. For evaluating the real-time prediction of S-wave accelerograms from P-wave
signals using LSTM networks—combined with fragility-based structural damage alerts for
induced seismicity—realistic induced ground motion records are required [28].
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To address this, the PEER database was examined for induced ground motion events,
and 20 records were selected. In total, nine induced earthquakes were identified, primarily
occurring in Oklahoma, Arkansas, and Texas, USA (Table 1). These earthquakes were
shallow, with depths between 3 and 14 km. From the available stations, records closest to
the epicenter were chosen, with epicentral distances ranging from 5 km (the nearest station)
to 55 km. The selected events had moment magnitudes between 3.0 and 5.5 (Figure 2), and

the corresponding range of PGA values is also shown in Figure 2.

Table 1. Earthquake events involving induced seismicity identified in the PEER database.

Epicenter Epicenter
EQ-ID EQ-ID Year Name Location My Latitude Longitude Depth
Database (km)
(Deg) (Deg)
1 57 2010 Lincoln_2010-02-27 Lincoln OK 4.18 35.553 —96.752 4
Slaughterville Slaughterville
2 66 2010 2010-10-13 OK 4.36 35.202 —97.309 14
3 67 2010 Guy_2010-10-15 Guy AR 3.86 35.276 —-92.322 5
4 73 2010 Arcadia_2010-11-24 Arcadia OK 3.96 35.627 —97.246 3
Bethel Acres_ Bethel Acres
5 74 2010 2010-12-12 OK 3.23 35.392 —96.995 4
6 76 2010 Guy_2010-11-20 Guy AR 3.90 35.316 —92.317 5
7 80 2011 Greengzrfgg—zon' Greenbrier AR 4.68 35.265 —92.34 4
8 91 2011 Sparks_2011-11-06 Sparks OK 5.68 35.537 —96.747 9
9 92 2011 Comal_2011-10-20 Comal TX 4.71 28.81 —98.15 4
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Figure 2. Induced ground motions selected from PEER database.

2.2. Short-Term Average over Long-Term Average (STA/LTA) for Induced Seismic Event Detection

The short-term average over long-term average (STA/LTA) [30] is a signal processing
technique commonly used in seismology and other time-series analysis fields for event
detection (e.g., detecting earthquakes, acoustic events, or anomalies in continuous data
streams). The STA /LTA ratio is a dimensionless measure that highlights sudden changes
in a signal compared to its background. This method is applied to the induced ground
motions of the database (Table 1) in order to define the P-wave arrival time and when
the event’s trigger is on and off (P-waves are first; the trigger-on usually matches the
P-wave arrival, and the trigger-off occurs after the higher-energy S-wave has passed).
Figure 3 depicts these parameters for the ground motion of the North-South horizontal
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component of the station GS OK009 in the Arcadia event of Table 1 in 2010, along with its
characteristic function.
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Figure 3. Trigger on and trigger off, along with the characteristic function of Arcadia-induced seismic
event of Table 1 and the recorded accelerogram of station GS OK009 of PEER database (acceleration
values in (g)).

2.3. Description and Input—Output Design of LSTM Machine Learning Model

LSTM (Long Short-Term Memory) RNNs are a specialized type of RNN Recurrent
Neural Network designed to better capture long-term dependencies and sequential patterns
in data. They also address common training challenges, such as the exploding gradient
problem. Unlike a standard RNN layer, an LSTM layer replaces the simple RNN structure
with units capable of identifying important correlations in the data, while “ignoring”
irrelevant or noisy information. To illustrate the need for LSTM RNNSs, consider a dataset
where each record is a very long sentence. For this example, assume that each sentence-
record is represented by a set of D variables, where each variable corresponds to a word in
the sentence. The goal is to predict the last word of each sentence, and D represents the total
number of words in the longest sentence-record. In a dataset with D variables, a single-layer
LSTM RNN operates similarly to a standard RNN, as shown in Figure 1. The key difference
is the presence of an additional set of outputs (Cy, Cy,. . .,Cp), which are fed into the layer
when processing the next variable. In the sentence example, these outputs indicate whether
the immediately preceding word is “important” or should be ignored when predicting
the next word. Training an LSTM RNN follows the same procedure as training a standard
RNN, with the added step of estimating these values (Cy, Cy,...,Cp). The network uses
the known target values in the training data to learn optimal network parameters and
determine the significance values Cj, Cy,...,Cp for each position in a sequence. Once
trained, an LSTM RNN can predict new data, and is particularly well-suited for tasks that
require learning long-range dependencies, much like a standard RNN, but with greater
efficiency and reliability [31].

Similarly, and according to Figure 1, the recorded ground motion of a horizontal
component from the seismic station near the induced seismic event from the PEER database
is divided in the P-wave signal, until the first important acceleration peaks of S-wave arrival
and the rest until trigger-off (based on the previous subsection’s remarks) are considered
as an S-wave accelerogram. The P-wave signal is used as an input for training the LSTM
neural network and the S-wave accelerogram is used for testing the predictions of the
LSTM RNN network. One part of the S-wave accelerogram is used also for the validation
set of this machine learning method.

Finally, machine learning models and neural networks are trained to accept a set of
values X (the values of the available variables) in order to predict the value of the variable
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Y. However, in the present problem of forecasting future values of a variable, there is only
one variable available—acceleration values—which is the one whose future values must
be predicted as Y. This problem can be overcome by applying a simple transformation to
the data. Specifically, from the original time-series data, new data is created. In this data,
each record contains one of the available values of the variable as the true label variable
to be predicted and past values of the same variable as the remaining available variables
(see Figure 4 of a random variable of this data process). The time-series data, consisting
of sequential observations of the variable Y, is transformed into a supervised learning
format using a sliding-window approach. Specifically, lagged values of Y are constructed as
predictor variables (X;) where each X; corresponds to the value of Y at previous time steps.
The target variable is defined as the current value of Y. This restructuring enables the use of
regression or machine learning algorithms by mapping past observations to predict future
outcomes, thereby converting the forecasting task into a supervised learning problem. In
the next section, the results of this machine learning method applied to the PEER database
through LSTM networks will be provided for the considered ground motions (Table 1).

_pate_|
1/1/2020
2/1/2020
3/1/2020
4/1/2020 s ] v |
5/1/2020 101,3 101,7 101,4 101, 100,8
101,7 101,4 101,3 100; 101,3

6/1/2020
7/1/2020
8/1/2020
9/1/2020

Figure 4. Data transformation for similar time-series (like ground motion) problems.

3. Results
3.1. Application of LSTM RNN Network with Python

Following the description of the proposed methodology, this section presents the
results of applying machine learning (ML) techniques to rapid response systems for induced
seismicity near geothermal platforms. The analysis focuses on supervised ML methods,
with particular emphasis on LSTM RNNSs, applied to a subset of the PEER database
(Table 1).

The standard workflow of a machine learning task generally involves the following
steps:

Formulating the problem and identifying the required data.
Collecting the data in a usable format.

Detecting and addressing data gaps or uncertainties.
Preprocessing and preparing the data for model input.

Training the model on the designated training dataset.

Using the trained model to generate predictions on the test dataset.

NN

Comparing the predictions with the actual test outcomes and calculating performance
metrics.

8.  Refining the model, expanding the dataset, or considering alternative modeling strate-
gies if results are not satisfactory.

Neural networks are computational models inspired by the functioning of the human
brain, designed to address a wide range of tasks such as classification, regression, and
time-series forecasting. The branch of machine learning dedicated to training neural
networks—particularly those with complex architectures—is commonly referred to as Deep
Learning [31]. The fundamental unit of a neural network is the neuron. In essence, a neural
network is composed of interconnected neurons organized into multiple layers.
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Training an LSTM RNN on the available dataset involves optimizing the parameters
that link neurons between successive layers. In this study, the LSTM layer consists of
500 neurons. The training process, which begins with forward propagation, can be outlined
as follows:

1.  Each record in the training set is passed through the LSTM RNN, and the network
produces a prediction of the target variable.

2. These predictions are then used to compute the Cost Function, which measures
the prediction error of the model. A commonly used choice is the Mean Squared
Error (MSE).

3. Following forward propagation, backward propagation is performed. In this step, the
model’s parameters are updated to reduce the Cost Function value. The updates are
carried out in reverse order—starting from the output layer and moving back toward
the input layer.

4. The combination of forward propagation, cost calculation, and backward propagation
for the entire training set constitutes a single epoch.

5. The next epoch begins using the updated parameters from the previous iteration.
Training continues for the specified number of epochs, and the parameter values
obtained after the final backward propagation are taken as the trained LSTM RNN
model parameters.

It should be emphasized that the number of epochs (set to 1000 in this study) is chosen
by the analyst, and represents a hyperparameter of the LSTM RNN model. Typically, the
appropriate number of epochs is determined through trial and error. In general, using
too few epochs may result in underfitting, as the model has insufficient exposure to the
training data, while too many epochs can lead to overfitting, where the model becomes
overly tailored to the training set and performs poorly on unseen data.

Mathematically, training a neural network—similar to any supervised learning model—
can be formulated as the problem of minimizing a chosen cost function with respect to the
model parameters. In the case of an LSTM RNN, these parameters represent the weights
that connect the outputs of neurons in one layer to the inputs of neurons in the subsequent
layer. Since this optimization problem is typically too complex to be solved exactly using
closed-form solutions, numerical methods are employed in practice. The process is further
facilitated by optimization algorithms, which systematically guide the search for parameter
values that minimize the cost function.

The Adaptive Moment Estimation (Adam) algorithm, employed in this study, is among
the most widely used optimization methods in neural network training. Unlike algorithms
that apply a single learning rate to all parameters, Adam assigns an individual learning rate
to each parameter. This feature makes it particularly effective for handling complex and
noisy datasets, enabling faster convergence and making it a preferred choice for training
neural networks on challenging problems.

Selecting an appropriate activation function for the neurons in the LSTM layers is
a critical step in the development of a neural network model. The choice of activation
function depends on the specific task the network is designed to address (e.g., regression
or classification), as well as on whether it is applied within the hidden/LSTM layers or at
the output layer. Table 2, below, provides a summary of the activation function used in
this study.

Table 2. Activations Function applied to the LSTM RNN:Ss in this study.

Activation Function

Equation Application

ReLu

F(x) = max(0, x) Regression problems with many hidden layers
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An essential hyperparameter in training a neural network is the choice of the cost
function. As previously discussed, the training process aims to determine the optimal
parameter values that minimize this function. So far, particular reference has been made to
the Mean Squared Error (MSE). Table 3 presents the cost function employed in this study for
the regression problem under consideration. So, to sum up, in the proposed model there is
an LSTM layer with 500 neurons and ReLu activation function. Moreover, there is a hidden
layer of 500 neurons with the same activation function. Finally, there is an output layer of
1 neuron without an activation function. The performance of the proposed methodology
applied to some of the induced ground motions (to avoid repetition) of Table 1 of the PEER
database is depicted in the following Figure 5 for ML training and testing, along with some
metrics reported in Table 4.

Table 3. Cost Function of the LSTM RNN for the regression problem of this study.

Cost Function

Equation Application

Mean Absolute Error (MAE) MAE = 1

Regression problems: less strict compared to
Mean Squared Error (MSE), since it does not
quantify the error as the square of prediction’s
deviation, but as an absolute distance.

e

N L |Yi— Y
1

Table 4. Mean Squared Error (MSE) of prediction performance of training and testing dataset.

EQ Name and Recording Station MSE Training Set MSE Testing Set
Lincoln_2010-02-27 /St. Wilshire Boulevard; Harrah 9.2268 x 107> 7.1828 x 107>
Slaughterville_2010-10-13/5St. Oklahoma Science Museum 0.0001374 0.0002488
Slaughterville_2010-10-13/5t. GS.OK009 0.0001115 0.0003106

Finally, in Figure 6, the loss indices depending on the number of epochs are reported
for Lincoln_2010-02-27 /St. Wilshire Boulevard; Harrah ground motion, to justify the epoch
number selection from the learning rate. The graph illustrates the training loss of an
LSTM network over 1000 epochs, showing its performance in forecasting based on time-
series data from “Lincoln 2010-02-27/St. Wilshire Boulevard; Harrah.” The loss, which
measures the model’s prediction error, starts on relatively high, at around 2 x 1072, and
decreases rapidly in the initial epochs, indicating effective learning during early training.
As training progresses, the loss continues to decline more gradually and stabilizes with
minor fluctuations, suggesting the model is converging and fine-tuning its predictions.
Overall, the steadily decreasing loss demonstrates that the LSTM network is successfully
learning temporal patterns in the data and improving its forecasting accuracy over time.
Finally, in the last figure, a comparison of a standard RNN with LSTM RNN is added,
with the same neural network layers’ configuration. While both are recurrent architectures,
the standard RNN suffers from vanishing gradient limitations, which reduce its ability to
capture longer temporal dependencies. As expected, in this experiment the standard RNN
underperformed, showing noticeably higher loss (Figure 6) and less accuracy. In contrast,
the LSTM RNN achieved significantly lower error values (simple RNN had an MSE of
0.0001133 in training and 0.0001001 in testing, accordingly) and can provide through PGA
more reliable fragility-based damage alerts. This direct comparison within the RNN family
demonstrates that while a simple RNN can be applied to the problem, the LSTM’s gating
mechanisms yield substantially better performance, making it the more suitable choice.
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Figure 5. Prediction of S-wave accelerograms (Horizontal 1/North-South component) from P-wave
signals using LSTM RNN networks.
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Figure 6. Loss indices for Lincoln_2010-02-27/St. Wilshire Boulevard; Harrah ground motion for
simple RNN and LSTM RNN.

3.2. Adopted Fragility Curves near Geothermal Platforms in France

Based on real case studies of Timber-Framed Masonry (TFM) and Unreinforced Ma-
sonry (URM) buildings in Alsace, France [28], fragility curves were developed in terms of
PGA through structural analysis, using incremental dynamic analysis (IDA) with gradually
increasing seismic intensity [32]. The analysis of the equivalent single-degree-of-freedom
(ESDOF) models [33] for these buildings was carried out in MATLAB (R2024b) [34], with
the FEDEAS Lab toolbox [35]. Ground motion records obtained from the previously in-
troduced PEER database (Table 1) were applied in the transverse (short/weak) direction
of the building plans. The fundamental periods of the studied structures were validated
through ambient vibration measurements using floor-level sensors [36] installed in each
building [28]. In addition, the main geometric data required for the simplified vulnerability
models were collected during on-site inspections [28,37]. The resulting fragility curves for
slight damage common in induced seismic events are presented in Figure 7. They show that
URM buildings exhibit a relatively similar probability of damage across different intensities,
whereas the more earthquake-resistant TFM buildings demonstrate reduced fragility at
low-to-medium intensity levels.

o
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Figure 7. Fragility curves derived for TFM and URM real buildings near the geothermal platforms in
Alsace, France.
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4. Discussion

Modern early-warning strategies for induced seismicity increasingly integrate real-
time monitoring, machine learning, and physics-based statistical models. The traditional
“traffic-light system”—which adjusts industrial operations based on observed seismic
thresholds—is still widely used, yet it has limitations, like delayed responses and post-
shutdown events (DESTRESS H2020, 2020 [37]). Cutting-edge advancements are enhancing
predictive capabilities through deep learning models trained on datasets from geothermal
sites. Complementary approaches include statistical forecasting models to predict the max-
imum expected magnitude in near-real time, and guide mitigation strategies [2,22]. These
combined strategies represent the current frontier: leveraging high-resolution monitoring
data, Al-driven early detection, and probabilistic forecasting to improve the timeliness
and precision of induced seismicity warnings. In this study however, fragility-based alert
systems, which link ground-motion LSTM RNN networks predictions from real induced
seismic events directly to the vulnerability (fragility curves) of nearby infrastructure, are
allowing operators to issue warnings not based on seismic magnitude, but on the probabil-
ity of exceeding seismic damage thresholds (Figures 1 and 7). From the results of Figure 5
and Table 4, it can be seen that, although there is some deviation in the PGA (making the
rapid response system more conservative through the fragility curves of Figures 1 and 7),
the overall capture of the nonlinearity of the ground motion has a minimum MSE error.
This deviation in PGA values in the testing set is due to the fact that the ML model is not
trained to high PGA values from the P-wave signal. Finally, it should be noted that CNNs
and RNNs offer complementary strengths for EEW systems. CNNs excel at extracting
spatial and temporal features from seismic waveforms, making them effective for rapid
event detection and classification directly from raw sensor data. They can quickly identify
patterns associated with P-waves, enabling faster alerts [18,22]. In contrast, RNNs, particu-
larly those using LSTM architectures, are well-suited for modeling sequential dependencies
and predicting the evolution of seismic signals over time. This makes RNNs valuable
for estimating parameters such as earthquake magnitude or predicting ground motion
progression. In practice, CNNs often outperform RNNs in speed and robustness, while
RNNSs provide better temporal context—leading to hybrid CNN-RNN models that leverage
both spatial feature extraction and temporal sequence learning for improved EEW accuracy
and reliability. Therefore, future work would apply the research framework of Figure 1 to
hybrid CNN-RNN models.

5. Conclusions

A reliable performance-based monitoring framework offers an effective approach to
managing risks from induced and triggered seismicity. To enable rapid loss forecasting,
a set of fragility curves for slight damage in masonry buildings has been adopted from
previous authors’ research. The improved real-time rapid response system leverages LSTM
neural networks to predict complete S-wave accelerograms from the initial P-wave inputs
of real induced seismic events drawn from the developed subset of the PEER database.
The STA /LTA ratio—a dimensionless measure that highlights sudden changes in a signal
compared to its background—is applied to the induced ground motions of the database in
order to define the P-wave arrival time and when the event’s trigger is on and off (P-waves
are first; the trigger-on usually matches the P-wave arrival, and the trigger-off occurs after
the higher-energy S-wave has passed). Then, the predicted S-wave motions are connected
through PGA prediction to the fragility curves in real time, to estimate the probability of
structural damage in masonry buildings commonly found in rural geothermal regions. By
capturing, with minimal error, the nonlinear evolution of ground shaking, and connecting
that to the corresponding structural response, the method could provide critical seconds of
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lead time for automated decision-making systems. This capability enhances risk awareness
for local stakeholders and industry alike, contributing to more informed and effective
management of risks associated with induced and triggered seismicity. This study will be
the basis for further examination of hybrid CNN-RNN models that synergistically combine
spatial feature extraction and temporal sequence learning to boost EEW performance
and reliability.
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The following abbreviations are used in this manuscript:

EEW Earthquake Early Warning
PEER Pacific Earthquake Engineering Research Center
LST™M Long Short-Term Memory neural network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
PGA Peak Ground Acceleration
Al Artificial Intelligence
ML Machine Learning
STA/LTA  Short-Term Average over Long-Term Average
TFM Timber-Framed Masonry
URM Unreinforced Masonry
ESDOF Equivalent Single-Degree-Of-Freedom
MSE Mean Squared Error
MAE Mean Absolute Error
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