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Abstract 

Columns are crucial to structural performance, and this paper addresses the critical need for 

predicting failure modes in reinforced concrete (RC) columns by evaluating the potential of a 

random forest machine learning (ML) model. This model is built using data from the well-

known PEER structural performance database, which compiles results from over 400 cyclic, 

lateral-load tests on reinforced concrete columns. The database includes tests on spiral or cir-

cular hoop-confined columns, rectangular tied columns, and columns with or without lap 

splices of longitudinal reinforcement at critical sections. Here, the effectiveness of supervised 

ML techniques is examined, specifically random forests, using a randomly selected test set from 

the Pacific Earthquake Engineering Research Center (PEER) database. The model achieved 

an overall accuracy of 94% for rectangular RC columns and 86% for circular RC columns. 

Additionally, the model's predicted failure modes matched or even outperformed those calcu-

lated using code-defined equations (the traditional method) in some cases. This study demon-

strates that random forest models are highly effective for postdicting RC column failure modes, 

highlighting the transformative potential of machine learning in earthquake engineering. 
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1 INTRODUCTION 

The failure mode of structural elements, such as reinforced concrete columns, is influenced 

by various factors, including their geometric properties, longitudinal reinforcement, the effec-

tiveness of confinement provided by transverse reinforcement, and the loading history. The 

response of these columns across the loading range is governed by competing resistance mech-

anisms, such as flexure, shear, buckling of longitudinal bars under compressive loads, and, in 

cases involving lap splices, the behavior of the lap splice mechanism for reinforcing bar devel-

opment. Often, a combination of these mechanisms defines the overall behavior of the column, 

particularly under cyclic load reversals. Numerous predictive models have been proposed to 

estimate both the strength and deformation capacity of columns. However, as evidenced by test 

comparisons, the uncertainty in predicting deformation capacity is significantly greater—by at 

least an order of magnitude—than that for strength [1]. 

System identification and damage detection is a dual-focused field that leverages machine 

learning (ML) to replicate structural systems and predict their deterministic seismic responses. 

Laboratory testing of reinforced concrete (RC) structures has provided valuable data, enabling 

ML techniques to identify failure modes, strength, capacities, and constitutive behaviors. Re-

cently, ML approaches, which rely on algorithms to learn from data, have been applied to risk 

assessment and predictive modeling in civil engineering. Some studies have specifically ex-

plored failure mode prediction and shear strength estimation for beam–column joints. For ex-

ample, Mitra et al. (2011) [2] classified non-ductile joint shear failure and ductile beam yielding 

failure in interior beam–column joints. Similarly, Tang et al. (2022) [3] conducted low-cycle 

reciprocating loading tests on 23 recycled aggregate concrete-filled steel tube columns and 3 

ordinary concrete-filled steel tube columns. Their study employed artificial intelligence, spe-

cifically random forests with hyperparameters optimized using the firefly algorithm, to assess 

the effects of parameter variations on the seismic performance of concrete columns. Related 

studies, including multi-objective optimization analyses, are discussed in Tang et al (2023) [4]. 

This study evaluates the performance of a supervised learning algorithm, the random forest, 

as a predictive model for the first time in postdicting the failure mode of reinforced concrete 

(RC) columns. The evaluation is conducted using a widely referenced experimental dataset 

originally compiled by Berry and Eberhard (2004) [5]. Known as the PEER (Pacific Earthquake 

Engineering Research Center) Structural Performance Database, this resource aggregates re-

sults from over 400 cyclic lateral-load tests of RC columns. It includes data on spiral or circular 

hoop-confined columns, rectangular tied columns, and columns with or without lap splices in 

the longitudinal reinforcement at critical sections. For each test, where available, the database 

provides details on column geometry, material properties, reinforcement details, test configu-

ration (including P-Delta effects), axial load, digital lateral force-displacement histories at the 

column top, and top displacement associated with various damage observations. 

In Berry and Eberhard's experimental database (2004) [5], column failure modes were cate-

gorized as: 

(a) Flexure critical, 

(b) Flexure–shear critical, or 

(c) Shear critical 

These classifications were based on the following criteria: 

• If no shear damage was reported, the column was categorized as flexure critical. 

• If shear damage (diagonal cracks) was noted, the absolute maximum effective force 

(Feff)-the highest measured force in the experimental response—was compared to the 

calculated “ideal” force (F0.004), corresponding to a maximum axial compressive 

strain of 0.004 (the strain at which unconfined concrete spalls). The failure 
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displacement ductility (μfail) was defined as the displacement ductility at 80% of the 

maximum effective force (Feff). If 𝐹𝑒𝑓𝑓 < 0.95 ∙ 𝐹0.004  or if  𝜇𝑓𝑎𝑖𝑙 ≤ 2 the column 

was classified as shear critical. Otherwise, the column was categorized as flexure–

shear critical.  

All columns in the database were further grouped by cross-sectional shape (rectangular or 

circular). 

2 TRADITIONAL METHOD PREDICTING COLUMN FAILURE MODE BASED 

ON ENGINEERING MECHANICS 

RC columns are crucial to the overall performance of a structure, as their failure can lead to 

disproportionate consequences for the entire system. The behavior of RC columns under com-

bined axial load, shear, and flexure has been extensively studied for decades. When it comes to 

flexural behavior, sectional analysis or a fiber model in a one-dimensional stress field can pro-

vide reasonable estimates of ultimate strength and yielding deformation along with the flexural 

failure mode prediction. However, the performance of RC columns dominated by shear or 

shear-flexure cannot be accurately predicted through sectional analysis alone, as shear force 

transfer involves stress fields that extend through the member to its supports. Figure 1 illustrates 

the shear strength degradation models used by EN 1998-3 (2005) [6] and ASCE-SEI 41 (2007) 

[7] to represent the envelope of resistance curves for reinforced concrete columns as a function 

of displacement ductility. 

 

 

Figure 1: Shear strength degradation model for RC column failure mode prediction adopted by current codes of 

assessment. 

These models serve as the primary criterion for identifying shear failure occurring before 

or after flexural yielding (the point where the shear curve intersects the flexural capacity curve). 

To define the shear failure strength and deformation of the reinforced concrete column, it is 

essential to first establish the flexural capacity curve using classic flexural analysis and then 

integrate it with the shear strength reduction curve proposed by the codes. This approach is 
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applied in the current section to evaluate the accuracy of the code provisions in identifying the 

exact failure mode of RC columns before testing the same performance with ML methods in 

the next Section. 

2.1 Shear Demand Curve 

Shear demand curves (flexural capacity, Figure 1) for RC columns of the PEER database are 

obtained through nonlinear static pushover or cyclic analysis using a well-known MATLAB 

toolbox called FEDEAS Lab [8-10], assuming flexural behavior without the occurrence of shear 

failure. 

 

 

Figure 2: a) Numerical model for Circular and Rectangular RC Columns failed in flexure in FEDEAS MATLAB 

toolbox [8-10] b) Circular Section discretization in fibers/layers c) Rectangular Section discretization in fi-

bers/layers. 

Numerical simulations were performed using a nonlinear fiber beam-column element that 

accounts for the spread of plasticity. In this analysis, the longitudinal beam element employs a 

force-based formulation with a linear moment distribution to construct a flexibility matrix that 

evolves step by step with increasing nonlinearity. Strain-displacement relationships are implic-

itly defined by inverting the flexibility matrix to obtain stiffness. Assuming strain compatibility 

among the materials in the member, the formulation evaluates sectional response at selected 

integration points along its length. At the sectional level, the Bernoulli hypothesis (plane sec-

tions remain plane and perpendicular to the member axis) is applied to relate fiber strains to 
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sectional curvature and axial strain. Nonlinear uniaxial material models are used to define the 

relationship between normal stress and strain in the fibers, neglecting the impact of shear on 

altering the principal stress orientations through the cross-sectional height. A typical column 

section discretization is depicted in Figure 2. Sectional stress resultants, such as moment and 

axial load, are derived by balancing the contributions of fiber stress resultants. 

2.2 Shear Capacity Curve  

Shear capacity curves of the RC columns of PEER database are obtained based on the shear 

strength degradation model of Figure 1.  

According to EN 1998-3 (2005)[6], the part of the cyclic shear resistance that depends on 

concrete and transverse steel contribution (excluding the part owing to axial load contribution), 

VR, decreases with the plastic part of ductility demand, expressed in terms of ductility ratio of 

the transverse deflection of the shear span or of the chord rotation at member end: 𝜇𝛥
𝑝𝑙 = 𝜇𝛥 −

1. For this purpose 𝜇𝛥
𝑝𝑙 may be calculated as the ratio of the plastic part of the chord rotation, 

θp, normalized to the chord rotation at yielding, 𝜃𝑦.  

Thus, EN 1998-3 (2005) [6] defines shear strength accounting for the above reduction as 

follows: 

 

  𝑉𝑅 = [(ℎ − 𝑥) 2𝐿𝑠⁄ ] ∙ min(𝑁; 0.55𝐴𝑐𝑓𝑐) + [1 − 0.05𝑚𝑖𝑛(5; 𝜇𝛥
𝑝𝑙)] ∙

     {0.16𝑚𝑎𝑥(0.5; 100𝜌𝑡𝑜𝑡)[1 − 0.16𝑚𝑖𝑛(5; 𝐿𝑉 ℎ⁄ )]√𝑓𝑐𝐴𝑐 + 𝑉𝑤}                                        (1) 

 

where 𝒉: is the depth of the cross-section (equal to the diameter D for circular sections); 𝒙: is 

the compressive zone depth; 𝑵: is the compressive axial force (positive, taken as being zero for 

tension); 𝑳𝒔 = 𝑀 𝑉⁄  is the shear span of the member; 𝑨𝒄: is the cross-sectional area, taken as 

being equal to 𝒃𝒘𝒅 for a cross-section with a rectangular web of width (thickness) 𝒃𝒘 and 

structural depth 𝒅 or to 𝝅𝑫𝒄
𝟐 𝟒⁄  (where 𝑫𝒄 is the diameter of the concrete core to the inside of 

the hoops) for circular sections; 𝒇𝒄: is the concrete compressive strength, and 𝝆𝒕𝒐𝒕: is the total 

longitudinal reinforcement ratio.  Term 𝑽𝒘 is the contribution of transverse reinforcement to 

shear resistance, taken as equal to 

 

𝑉𝑤 =
𝜋

2

𝐴𝑠𝑤

𝑆
𝑓𝑦𝑤(𝐷 − 2𝑐)                                                  (2) 

 

where, 𝒇𝒚𝒘 is the yield stress of the transverse reinforcement, Asw the area of the spiral wire, c 

the concrete cover, and S is the spiral step (spacing between successive turns of a spiral).  Sim-

ilarly, for rectangular cross-sections with a web having width 𝒃𝒘: 

 

𝑉𝑤 = 𝜌𝑤𝑏𝑤𝑧𝑓𝑦𝑤                                                      (3) 

 

where 𝝆𝒘 is the transverse reinforcement ratio, 𝒛 is height of the equivalent truss (internal lever 

arm between longitudinal tension and compression resultants, i.e., d-d’ in beams and columns).   

In concrete columns with shear span ratio of 𝐿𝑠 ℎ⁄  less or equal to 2, the shear strength, 𝑉𝑅 

cannot exceed the value corresponding to failure by web crushing along the diagonal of the 

column after flexural yielding, 𝑉𝑅,𝑚𝑎𝑥, which under cyclic loading may be calculated from the 

expression: 

𝑉𝑅,𝑚𝑎𝑥 = (4 7⁄ )[1 − 0.02𝑚𝑖𝑛(5; 𝜇𝛥
𝑝𝑙)][1 + 1.35(𝑁 𝐴𝑐𝑓𝑐⁄ )][1 + 0.45(100𝜌𝑡𝑜𝑡)] ∙

√𝑚𝑖𝑛(40; 𝑓𝑐)𝑏𝑤𝑧 ∙ 𝑠𝑖𝑛2𝛿                                                                                                               (4)                                                        
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where 𝜹 is the angle between the diagonal strut that is defined by the centroids of the compres-

sion zones at the column ends, and the axis of the column (tan 𝛿 = ℎ 2𝐿𝑠⁄ ). 

ASCE/SEI 41 [7] is the latest in a series of documents developed after the FEMA [11] initi-

atives in the 1990s and 2000s towards the development of a consistent assessment framework 

for existing structures. The FEMA/ATC documents form the first integrated reference for per-

formance-based engineering, whereby deformation and force demands for different seismic 

hazards are compared against the capacities at various performance limits (i.e. states of damage). 

At the outset of this momentous project by FEMA, available data on the performance of existing 

components were rather limited and therefore reliability concepts were not applied evenly to-

wards the establishment of performance criteria.  The issue of dependably estimating the shear 

strength of a RC element appears to be rather complicated as it presumes the full understanding 

of the several interacting behavior mechanisms under reversed cyclic loading, whereas it is 

strongly affected by the imposed loading history, the dimensions of the element (e.g. the aspect 

ratio), the concrete strength, the longitudinal reinforcement ratio but mostly the ratio and the 

detailing of the transverse reinforcement. So far it has not been possible to theoretically describe 

the strength of the shear mechanism from first principles of mechanics without the use of cali-

brated empirical constants. Therefore, the shear strength estimates obtained from calibrated de-

sign expressions necessarily rely on the pool of experimental data used for correlation of the 

empirical expressions, as well as on the preconceived notions of the individual researchers as 

to the role each variable has in the mechanics of shear.  

The following expression for estimation of the shear strength of reinforced concrete columns 

is proposed by the Code for seismic rehabilitation of existing buildings of the American Society 

of Civil Engineers ASCE/SEI 41 (2007) [7]: 

 

𝑉𝑅 = 𝑉𝑐 + 𝑉𝑤 = 𝑘(𝜇𝛥) [(0.5√𝑓𝑐 (𝐿𝑠 𝑑⁄ )⁄ )√1 + 𝑁 (0.5𝐴𝑔√𝑓𝑐)⁄ ] 0.8𝐴𝑔 + 𝑘(𝜇𝛥) ∙

[𝐴𝑠𝑤𝑓𝑦𝑤𝑑 𝑆⁄ ]                                                                                                                                  (5) 

 

where 𝑽𝒄 is the concrete contribution in shear resistance; 𝑽𝒘 is the contribution of transverse 

reinforcement; 𝒅 is the effective depth; 𝑳𝒔 is the shear span of the column; 𝑵 is the axial force 

(compression positive, taken zero for tension); 𝑨𝒈 is the gross cross-sectional area of the col-

umn; 𝑨𝒔𝒘 is the cross-sectional area of one layer of stirrup reinforcement parallel to the shear 

action; and 𝑺 is the centerline spacing of stirrups along the length of the member. If S is equal 

to or greater than half of the effective depth of the column then the contribution of steel rein-

forcement 𝑽𝒘 in shear strength is reduced to 50% of its estimated value from the above equation. 

If S is equal to or greater than the effective depth of the column then zero shear strength con-

tribution from steel reinforcement 𝑽𝒘 is considered; 𝒇𝒄 is the concrete compressive strength; 

𝒌(𝝁𝜟) is the shear strength reduction coefficient that depends on ductility demand. If ductility 

demand is less than or equal to 2 then the factor is set to equal to 1 (i.e. no strength reduction). 

If the ductility is greater than 6, then the reduction factor is equal to 0.6. For ductility between 

2 and 6 the reduction factor is linearly interpolated between the proposed values.  

2.3 Failure Mode Prediction  

In the next Section the efficiency of ML methods and especially random forests in predicting 

the failure mode of RC columns testcases taken from PEER structural performance database 

will be tested. In this Section however the same performance inquiry will be examined for the 

traditional method based on engineering mechanics using the same test set of columns as the 
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one that will be employed in the next Section. Moreover, the confusion matrix as performance 

metric of the traditional method will be reported here too both for circular and rectangular RC 

columns of the PEER database. 

 

Figure 3: Comparison between numerical and experimental response of circular column failed in flexure (ID#99) 

(specimen case obtained from the Berry and Eberhard Database 2004 and was analyzed herein). 

For the case of a circular column failed in flexure for example, a single beam-column ele-

ment was used to represent the entire length of the cantilever column (Figure 2), with five 

Gauss-Lobatto integration points defined along the element [FEDEAS Lab [8-10]]. The effect 

of confinement on the concrete core was modeled by appropriately modifying the properties of 

the uniaxial stress-strain law for concrete in compression [12,13]. The P-Δ effect was not in-

cluded in this simulation. The computed lateral force-lateral displacement response of the col-

umn is plotted in Figure 3 for comparison with experimental results. 

For a rectangular RC column from the test set that failed in flexure, a single fiber element 

was assigned to represent the entire height of the cantilever column here too (Figure 2). Five 

Gauss-Lobatto integration points were defined along the element. The uniaxial stress-strain re-

sponse of concrete was modeled using the relationship proposed by Mander et al. (1988). The 

differing confinement effects between the unconfined concrete cover and the confined concrete 

core were not incorporated into the section discretization (Figure 2). The longitudinal reinforce-

ment's stress-strain behavior was simulated using the model by Menegotto and Pinto (1973) 

[14]. Once again, the P-Delta effect was excluded from the analysis. The lateral force-lateral 

displacement response from the numerical simulation of the column was compared with exper-

imental results, as shown in Figure 4. Similar to the case of circular section columns, good 

agreement was observed between numerical and experimental results. Thus, in the performance 

metrics it will be considered that the flexural mode of failure both for circular and rectangular 

columns can be 100% predicted by traditional methods based on engineering mechanics and 

code provisions.  

Figure 5 presents a comparison between the analytical and experimental responses of a rec-

tangular column failed in shear (ID#140). The correlation is quite poor, even in terms of the 
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initial stiffness predicted by flexural analysis. This discrepancy arises from the omission of 

deformation contributions due to reinforcement pullout and shear deformation. It is evident that 

only the degrading shear strength model from ASCE-SEI 41 (2007) [7] intersects the flexural 

capacity curve, indicating the occurrence of shear strength failure as a result of shear strength 

degradation. However, the displacement at which the latter failure is predicted occurs earlier 

than the actual onset of strength degradation observed in the experimental results. Regarding 

performance in this case since not all the code provisions predicted correctly the failure mode 

it will be considered that the prediction was not successful.  

 

Figure 4: Comparison between numerical and experimental response of rectangular column failed in flexure 

(ID#7) (specimen case obtained from the Berry and Eberhard Database 2004 and was analyzed herein). 

 

Figure 5: Comparison between numerical and experimental response of rectangular column failed in shear 

(ID#140) (specimen case obtained from the Berry and Eberhard Database 2004 and was analyzed herein). 
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Both shear strength degradation models depicted in Figure 6 identified shear failure after 

yielding, but at a displacement significantly lower than observed in the corresponding experi-

mental results. The EN 1998-3 (2005) [6] model provided a more accurate estimation of 

strength at shear failure compared to the ASCE-SEI 41 (2007) [7] model. Here the traditional 

method was successful in predicting the failure mode. More comparison cases are included in 

[15]. 

 

Figure 6: Comparison between numerical and experimental response of circular column failed in shear (ID#14) 

(specimen case obtained from the Berry and Eberhard Database 2004 and was analyzed herein). 

The performance metrics for circular RC columns through failure mode prediction with the 

traditional method are presented below. The traditional method based on engineering mechan-

ics and code provisions (see also [15]) achieves an accuracy of 81% in predicting the actual 

failure mode of the tested columns. This accuracy can be calculated using Table 1 by dividing 

the sum of the diagonal elements by the total sum of all elements in the table. 

 
Table 1: Confusion matrix in numbers for prediction through engineering mechanics and code provisions of the 

failure mode of circular RC columns of PEER structural performance database. 

 

  Confusion Matrix in Numbers 

T
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Flexure 12 0 0 

Flexure–

Shear 
2 5 0 

Shear 0 2 0 

 Flexure Flexure–Shear Shear 

 Predicted Values 

 

Finally, the performance metrics for rectangular RC columns through failure mode predic-

tion with the traditional method are presented below too. The traditional method based on 
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engineering mechanics and code provisions (see also [15]) achieves an accuracy of 97 % in 

predicting the actual failure mode of the tested columns. This accuracy can be calculated using 

Table 2 by dividing the sum of the diagonal elements by the total sum of all elements in the 

Table. 

 
Table 2: Confusion matrix in numbers for prediction through engineering mechanics and code provisions of the 

failure mode of rectangular RC columns of PEER structural performance database. 

 

  Confusion Matrix in Numbers 

T
ru

e 
V

al
u

es
 Flexure 57 0 0 

Flexure–

Shear 
1 3 0 

Shear 1 0 0 

 Flexure Flexure–Shear Shear 
 Predicted Values 

3 SUPERVISED MACHINE LEARNING PREDICTION OF COLUMN FAILURE 

MODE WITH RANDOM FORESTS  

3.1 Random Forests with Python 

After providing the failure modes along with the performance metrics of traditional failure 

mode prediction based on nonlinear structural analysis, the methodology for predicting the fail-

ure modes of reinforced concrete columns by exploring the potential of machine learning (ML) 

methods is introduced. The process for achieving this goal is detailed here, focusing on super-

vised ML techniques, such as random forests, applied to a randomly assigned test set derived 

from the PEER database [16]. 

In any machine learning problem, the process typically involves the following steps: 

1. Define the problem and identify the required data. 

2. Collect the data in a usable format. 

3. Address any data gaps or uncertainties and resolve them as needed. 

4. Prepare the data for use in the machine learning model. 

5. Establish a baseline model to serve as a benchmark for improvement. 

6. Train the model using the training dataset. 

7. Use the model to make predictions on the test dataset. 

8. Compare the predictions to the known test targets and calculate performance metrics. 

9. If the performance is inadequate, refine the model, gather additional data, or explore 

alternative modeling techniques. 

3.2 Results 

The performance metrics of applying the above-described methodology for rectangular RC 

columns are presented below. Random forests achieve a 94% accuracy rate in predicting the 

actual failure modes of the tested data. This accuracy can be calculated from Table 3 by dividing 

the sum of the diagonal matrix terms by the total sum of all table terms. Additional performance 

metrics are provided in Table 4. 

 

 



Konstantinos G. Megalooikonomou and Grigorios N. Beligiannis 

Table 3: Confusion matrix in numbers for ML prediction of the failure mode of rectangular RC columns of 

PEER structural performance database with random forest method. 

 
 Confusion Matrix in Numbers * 

T
ru

e 

V
al

u
es

 Flexure 55 2 0 

Flexure–

Shear 
2 2 0 

Shear 0 0 1 

 Flexure Flexure–Shear Shear 

 Predicted Values 

* See also Figure 7 

Table 4 : Performance metrics 

Performance Metrics * 

 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 
Accuracy Precision Recall 

Flex-

ure 
55 

2 + 1 

+ 0 + 0 = 

3 

2 + 0 = 

2 

2 + 0 = 

2 

(55 + 3)/(55 + 3 +2 

+2) = 58/62 = 94% 

(55)/(55 +2) = 

55/57 = 97% 

(55)/(55 +2) = 55/57 = 

97% 

Flex-

ure–Shear 
2 

55 + 0 

+ 0 + 1= 

56 

2 + 0 =2 
2 + 0 = 

2 

(2 + 56)/(2 + 56 +2 

+2) = 58/62 = 94% 

(2)/(2 +2) = 2/4 = 

50% 
(2)/(2 +2) = 2/4 = 50% 

Shear 1 

55 +2 

+2 +2 = 

61 

0 + 0 = 

0 

0 + 0 = 

0 

(1 + 61)/(1 + 61 +0 

+0) = 62/62 = 100% 

(1)/(1 +0) = 1/1 = 

100% 
(1)/(1 +0) = 1/1 = 100% 

* See also Table 3 

 

 

Figure 7: Confusion matrix as performance metric for ML prediction of the failure mode of rectangular RC col-

umns of PEER structural performance database with random forest method. 

 

Analyzing the influence of individual parameters within the feature set reveals that the trans-

verse reinforcement ratio is the most critical factor for the model’s success. This finding con-

firms that the model has correctly identified the relationships between the input features and 

the target failure modes, underscoring the development of an ML prediction model grounded 

in physical principles. 

Furthermore, Table 4 indicates that the model is particularly effective at predicting flexural 

and shear failure modes compared to flexure-shear failure modes. This aligns with practical 

seismic assessment challenges, as flexure-shear is inherently more difficult to identify in real-

world engineering contexts. Lastly, it is important to note that Table 3 clarifies the insights 

illustrated in Figure 7, while Table 4 provides additional context for Table 3. 
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The performance metrics for circular RC columns are presented below too. Random forests 

achieve an 86% accuracy rate in predicting the actual failure modes of the tested data. This 

accuracy is calculated from Table 5 by dividing the sum of the diagonal terms by the total sum 

of all terms in the table. Additional performance metrics are provided in Table 6. 

A detailed analysis of the individual influencing parameters in the feature set reveals that the 

transverse reinforcement ratio is the most critical factor for the model's success. This finding 

confirms that the model accurately established the relationship between the features and the 

target failure mode, reinforcing the development of an ML prediction model grounded in phys-

ical principles. 

Table 5 further highlights that, for circular RC columns, the model performs better at pre-

dicting flexural and flexure-shear failure modes compared to other failure modes. This is ex-

pected, as brittle failures typically require nonlinear structural analyses for deterministic 

detection. Lastly, it should be noted that Table 5 provides clarification for the insights depicted 

in Figure 8, while Table 6 elaborates on the information in Table 5. 

 
Table 5: Confusion matrix in numbers for ML prediction of the failure mode of circular RC columns of 

PEER structural performance database with random forest method. 

  

 Confusion Matrix in Numbers * 

T
ru

e 

V
al

u
es

 Flexure 12 0 0 

Flexure–

Shear 
1 5 1 

Shear 0 1 1 

 Flexure Flexure–Shear Shear 

 Predicted Values 

* See also Figure 8 

 

Table 6: Performance metrics 

Performance Metrics * 

 
True 

Positive 
True Negative 

False 

Positive 

False 

Negative 
Accuracy Precision Recall 

Flex-

ure 
12 

5 + 1 + 1 + 1 = 

8 

1 + 0 = 

1 

0 + 0 

= 0 

(12 + 8)/(12 + 8 +1 

+0) = 20/21 = 95% 

(12)/(12 +1) 

= 12/13 = 92% 

(12)/(12 + 0) = 12/12 = 

100% 

Flex-

ure–Shear 
5 

12 + 0 + 0 + 1= 

13 
0 + 1 =1 

1 + 1 

= 2 

(5 + 13)/(5 + 13 +1 

+2) = 18/21 = 95 % 

(5)/(5 +1) = 

5/6 = 83% 
(5)/(5 +2) = 5/7 = 71% 

Shear 1 
12 +0 +1 +5 = 

18 

0 + 1 = 

1 

0 + 1 

= 1 

(1 + 18)/(1 + 18 +1 

+1) = 19/21 = 90% 

(1)/(1 +1) = 

1/2 = 50% 
(1)/(1 +1) = 1/2 = 50% 

* See also Table 5. 

 

 
Figure 8: Confusion matrix as performance metric for ML prediction of the failure mode of circular RC col-

umns of PEER structural performance database with random forest method. 
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Finally, in order to understand better how random forests builds its decision trees one of the 

decision trees of the process will be plotted for the cases of circular and rectangular RC columns 

displaying the decision-making process of a single tree within the ensemble in order to predict 

the failure mode of RC columns (Figures 9-12). 

 

 
Figure 9: Decision-making process of a single tree within the ensemble of random forests for circular col-

umns.  
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Figure 10: Decision-making process of a single tree within the ensemble of random forests for circular col-

umns.  

 
Figure 11: Decision-making process of a single tree within the ensemble of random forests for rectangular 

columns. 
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Figure 12: Decision-making process of a single tree within the ensemble of random forests for rectangular 

columns.  
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4 CONCLUSIONS  

This paper makes the following contributions to the application of ML methods in earth-

quake engineering research: 

 

• To the best of the authors knowledge, the PEER structural performance database is 

utilized for the first time to predict the failure modes of RC columns. 

• Rectangular RC columns are analyzed for the first time in failure mode detection 

using the random forest ML method. 

• A comprehensive investigation is conducted into the influence of key design varia-

bles on column ductility and failure modes. 

• Lastly, all essential performance metrics for evaluating the ML methodology's effec-

tiveness in predicting RC column failure modes are presented. 

 

Predicting the failure modes of RC columns is essential for designing effective retrofitting 

solutions for modern buildings and bridges. Current approaches often rely on nonlinear struc-

tural analysis methods, which are time-intensive and require significant effort to achieve accu-

racy. This study investigates the potential of integrating physical knowledge with machine 

learning (ML) techniques to predict the failure modes of RC columns. Utilizing the PEER struc-

tural performance database, the study examines the impact of key design variables on column 

ductility and failure modes. The results demonstrate that supervised ML methods, such as ran-

dom forests, can accurately classify failure modes when applied to a test set randomly drawn 

from the PEER database, particularly when enhanced with physical insights. The overall accu-

racy achieved is 94% for rectangular columns and 86% for circular columns while code-based 

prediction based also on nonlinear structural analysis achieves as it was demonstrated previ-

ously 97% and 81% respectively. This signifies that random forests outperformed traditional 

method based on engineering mechanics for the case of circular columns. These findings high-

light the transformative potential of ML in advancing earthquake engineering. Notably, this 

study is the first to use the PEER structural performance database to identify RC column failure 

modes through supervised ML approaches. Additionally, the influence of column section ge-

ometry, often overlooked in previous research focused mainly on circular columns, is explored. 

The findings lay a foundation for future studies on other supervised ML techniques, including 

Decision Trees, k-Nearest Neighbors, Neural Networks, and Deep Learning, to further enhance 

failure mode detection for RC columns. 
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