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A B S T R A C T

The required confined zone in critical regions of columns and piers undergoing lateral sway during earthquakes
is related to the plastic hinge length where inelastic deformation and damage develops. The exact definition of
the plastic hinge length stumbles upon several uncertainties, the most critical being that the extent of the in-
elastic region evolves and spreads with the intensity of lateral displacements. Design codes quantify a reference
value for the plastic hinge length, through calibrated empirical relationships that account primarily for the
length of the shear span and the diameter of primary reinforcing bars. The latter term reflects the effects of bar
yielding penetration in the support of columns. Here a consistent definition of plastic hinge length is pursued
analytically with reference to the actual strain state of the reinforcement. Strain penetration extending bilat-
erally on the reinforcing bars from the critical section towards the column shear span and towards the bar
anchorage is evaluated. Considering that bar yielding is synonymous to degradation of interfacial bond between
bar and concrete over the yielded area, the field equations of bond are solved explicitly along the column
primary reinforcement over the shear span, following the process of gradual crack formation along the member.
Boundary effects and important design variables are considered, such as the shear span aspect ratio and the
stress-resultants (axial load and flexural moment) carried by the column. Using this solution, the parametric
sensitivities of the plastic hinge length are illustrated and compared with other alternatives that have been
obtained through experimental calibration. Analytical estimations are also compared with experimental evi-
dence from a number of column specimens tested under axial load and reversed cyclic lateral drift histories
reported in the literature.

1. Introduction

The plastic hinge length is used in reinforced concrete (RC) seismic
detailing to determine the region where additional confinement re-
quirements apply, but also in performance based seismic design and
assessment in order to quantify the deformation capacity of RC col-
umns. It has been studied, quantified and calibrated against tests on
isolated column specimens. In the typical test, a cantilever column fixed
at the base and carrying a constant axial load is driven to a reversed
cyclic lateral load displacement history at the top. Deformation capa-
city of such members is usually described by the chord rotation that
may be sustained by the member prior to loss of its lateral load strength.
Contributing to the rotation are the flexural curvature that occurs along
the length of the member, as well as the lumped rotation at the critical
section resulting from inelastic strain penetration into the support (e.g.
footing) as well as inside the shear span. This share of deformation is
attributed to reinforcement pullout due to the incompatible length
change between the bar and the surrounding concrete.

In columns that do not fail by web crushing, pullout rotation in-
creases gradually with imposed drift, claiming a predominant share of
the members’ deformation capacity near the ultimate limit state.
Column deformation capacity at yielding and ultimate may be com-
puted using a variety of models [1–7]. A stick model is a common point
of reference to this purpose: The length of the cantilever Ls corresponds
to the shear span of an actual frame member under lateral sway
(Fig. 1a); the aspect ratio of the member Ls/h, where h is the cross
section depth, quantifies the intensity of shear force demand in the
member. Inelastic activity is assumed to occur within an equivalent
“plastic hinge length”, ℓpl, whereas the segment of the member outside
ℓpl is assumed to behave elastically. Displacements are calculated from
flexural curvatures assuming the curvature distributions of Fig. 1(b,c),
which correspond to development of yielding ϕy and post-yielding ϕu

flexural strengths at the support. The plastic rotation developing in the
hinge due to flexure is θplf=(ϕu− ϕy)⋅ ℓpl; similarly, the plastic rota-
tion owing to bar pullout from the support is θplslip= θuslip− θyslip
(Fig. 1d); the total plastic rotation is θpl= θplf + θplslip. The
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corresponding terms are (Fig. 1e) (x is the length counting from the
support to the tip of the cantilever column under study):
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where cx is the depth of compression zone at the critical cross section
(here it is assumed to remain constant after yielding) and Lb the total
available anchorage length, whereas Lb,min is the minimum required
anchorage length to yield a typical bar (diameter: Db), at a yield stress
fy, considering a uniform bond stress equal to the bond strength of fbmax.
Rotation of the critical cross section occurs about the centroid of the
compression zone (located at a distance 0.4cx from the extreme com-
pressed fiber based on the equivalent uniform stress block [8]). Para-
meters sy and su are values of reinforcement pullout slip from the sup-
port anchorage at yielding and ultimate (Fig. 1e). Term ℓr,u represents
the maximum sustainable penetration of yielding into the anchorage
(Fig. 1e); the maximum reinforcement strain, εu, that can be supported
by the reinforcement at critical cross section (i.e. support) may be es-
timated assuming that at the extreme, when the anchorage attains its
ultimate development capacity the strain distribution along the

anchored length is bilinear: εu= εy+4(Lb− Lb,min)fbres/(DbEsh), where
Esh is the hardening modulus of steel and fbres is the residual bond
strength due to cover splitting/delamination. The corresponding max-
imum and yield flexural curvatures are defined as: ϕu= εu /(d− cx)
and ϕy= εy /(d− cx), whereas the total plastic rotation capacity, θpl,
that may be sustained by the member may be estimated through reverse
engineering as [9]:
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where in Eq. (2a) index (i) denotes pullout from support and (ii) flexure
in the shear span; term α is the strain-hardening ratio of the re-
inforcement, a=1−My/Mu, defined from cross section analysis at
ultimate moment given a simplified stress – strain law for the hardening
branch of steel. Introducing the concept of the plastic hinge length, ℓpl,
the plastic rotation capacity from Eq. (2a) is written as:

≈ − = = − = +ϕ ϕ ϕ ϕ ϕ ϕ Lθ ( )·ℓ ·ℓ ; ; ℓ 0.5·ℓ α·pl u y pl pl pl pl u y pl r u s, (2b)

Empirical equations for the plastic hinge which have prevailed in

Fig. 1. (a) The stick model for a column under lateral sway. (b)–(c) Distributions of curvature along the column shear span at yielding moment My and at flexural strength Mu attained at
fixed support (Mu > My) respectively. (d) Drift components from curvature along shear span (θ f, Δ f) and from anchorage slip (θ slip, Δslip). (e) Bar state of stress/strain (f, ε) along shear
span and anchorage of a cantilever column under horizontal loading at the tip. [Note: the bar bond/slip state (fb, s) is illustrated only for the anchorage.]
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design Codes [5,10] and in research [1,11–15] have the form of Eqs.
(3a) and (3b) respectively:

= +L D fℓ 0.08 0.022· ·pl s b y (3a)

= + + ′L h D f fℓ 0.1 0.17· 0.24· · /pl s b y c (3b)

with h being the column sectional depth and fc′ the concrete compres-
sive strength. (For example, 0.08 and 0.1 are common values for the
strain hardening ratio α of common reinforcement, whereas the term
proportional to the bar diameter Db, which represents the strain pene-
tration length within the anchorage, is intended for well-designed an-
chorages that can easily support strain penetration lengths of
10∼ 20Db).

In the presence of high axial load N, the required confined length ℓc
is obtained from the basic value of ℓpl by adding terms to account for the
tension shift in the shear span of a member and the increased demands
for confinement [16] (γc in Eq. (3c) is a strength–reduction factor):

= + = +
′
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Bae and Bayrak [15] proposed an alternative expression of ℓpl, de-
rived from correlation with column experiments under various axial
load levels, recognizing explicitly the important variables that control
ℓpl:
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where h is the column depth, Ν is the applied axial load,
Νo=0.85fc′(Ag−As,tot)+ fyAs,tot, fc′ is the concrete compressive
strength, As is the area of tension reinforcement, As,tot is the total re-
inforcement area, and Ag the gross area of concrete section.

A significant limitation of the theoretical definition of ℓpl, as given
by Eq. (2b), is that it breaks down if the moment-curvature response of
the member is elastic – perfectly plastic (i.e., My=Mu, a=0), leading
to a rather small plastic hinge length. This is counter-intuitive when
considering that a necessary accessory to rebar yielding is the localized
loss of bond. Thus point-yielding of column reinforcement with no
penetration to adjacent areas is physically impossible. In practical ap-
plications, to resolve the indeterminacy caused in Eq. (2b) due to
elastoplasticity, ℓpl is taken as 0.5 h, or Eqs. (3a), (3b) are used directly
without reference to the underlying physical model. The apparent in-
consistency inherent in the theoretical definition of ℓpl is partly re-
sponsible for the poor correlation of the estimated deformation capacity
of flexure-dominated columns with results from experimental databases
[17,18]. An alternative is to explicitly solve for the plastic hinge length
by establishing and solving the field equations of bond along the
principal reinforcement (in the shear span) of the deformed member
under lateral sway, with particular emphasis on the part of the re-
inforcement that is strained beyond the limit of yielding into the
hardening range.

This modelling approach is pursued in the present paper. A uni-
directional model of bond is considered as a basis for the evaluation of
the longitudinal strain distribution of the primary reinforcement of the
column [19]. The processes of sequential crack formation due to ten-
sion stiffening, and the subsequent crack opening are explicitly con-
sidered. In the analysis, large localized slip magnitudes lead to bond
degradation that is accompanied by spread of inelastic strains both in
the shear span and in the anchorage. Although several solutions that
refer to the problem of force development along the anchorage have
been proposed, yet the problem of strain penetration in the anchorage
has received limited attention from researchers [19,20]. On the other
hand, the problem of strain penetration in the shear span of the member
has not been addressed explicitly yet and therefore it represents the
main scope of the present paper. In this study, strain distributions in the
shear span and in the bar anchorage are evaluated using a step by step

calculation algorithm; controlling variable is the tension strain magni-
tude at the critical cross section (support of the cantilever). Through
this process disturbed regions are identified in the shear span, where
bar strains are controlled by bond development rather than the “plane-
sections” assumption. Using this approach, the parametric sensitivities
of the plastic hinge length are illustrated and compared with the other
alternatives summarized in the preceding obtained from experimental
calibration. Application of the analytical procedure for estimating the
plastic hinge length is demonstrated through comparison with column
specimens tested under axial load and reversed cyclic lateral drift his-
tories reported in the literature.

2. Governing equations of bond-slip behavior in concrete

The basic equations that describe force transfer lengthwise from a
bar to the surrounding concrete cover through bond are derived from
force equilibrium established on an elementary bar segment of length
dx [21,22]:

= −df dx D f/ ( 4/ )·b b (4a)

where f is the axial stress of the bar; Db is the bar diameter; fb is the local
bond stress. Furthermore, compatibility between the relative transla-
tion of the bar with respect to the surrounding concrete, (i.e., slip= s),
the axial bar strain ε, and concrete strain εc over dx requires that
[21,22]:

= − − ≅ds dx ε ε ε/ ( )c (4b)

For normal concrete, term εc is neglected as its tensile value cannot
exceed the cracking limit (εc,cr≈ 0.00015) which is well below the
other terms of Eq. (4b). Bond stress and slip, and bar stress and strain
are related through the interface and material constitutive relation-
ships, =f f s( )b b and f= f(ε). Solution of Eq. (4) is possible though exact
integration, resulting in closed-form expressions for the state of stress
and strain along the anchorage, through pertinent selection of simple
models for the material laws (e.g. piecewise linear relations). This ap-
proach has a clear advantage over the numerical solution alternative in
that it enables transparent insight into the role of the various design
parameters on the behavior of bar anchorages and/or lap splices.

Here the reinforcing bar stress-strain relationship is considered
elastoplastic with hardening (representing conventional steel re-
inforcement, Fig. 2a). Without loss of generality, and to facilitate deri-
vation of closed-form solutions, a linear elastic, perfectly plastic local
bond-slip relationship with residual bond is assumed (Fig. 2b). The
plateau in the local bond-slip law implies sustained bond strength. This
feature is not always manifested in the test data; to be measured it
requires redundancy in the anchorage (i.e., availability of longer an-
chorages to enable force redistribution towards the healthy part of the
anchorage before failure). In the assumed law the end of the plateau is
marked by abrupt loss of bond strength to the residual value fbres. (Note
that fbres is taken nonzero only in the case of ribbed steel bars, but not
for smooth steel bars.) The last branch represents the residual friction
between the concrete cover and the steel bar after failure of the rib
interlocking mechanism.
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Fig. 2. (a) Assumed stress-strain law of steel reinforcing bar. (b) Assumed local bond-slip
law.
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Strain penetration occurs in the bars beyond the critical section due
to the degradation of bond beyond slip limit s2, that marks the end of
the plateau in the local bond-slip law. This stage may be attained in
different ways along a bar: (a) for yielding to occur, i.e. constant bar
stress (=fy, df/dx=0) for a range of values of bar strain ε > εy, bond
should be eliminated (fbres=0); if fbres is nonzero, then a yielded bar
will demonstrate a commensurate amount of strain hardening. (b) If the
bar is elastic (e.g. FRP bar), then for large strain levels bar slip values
are increased to levels beyond s2 (Fig. 2b): this is marked by debonding
and cover splitting of the loaded end of anchorage thereby limiting the
development capacity of the reinforcement.

Strain penetration of yielding over a bar anchorage has received
some attention, especially with regards to its contribution to rotation
capacity of structural members [19,20,23,24]. But the implications
resulting from spreading of inelastic strains in the shear span of a
structural member on the development capacity of reinforcement and
on member behavior have not yet been described with reference to the
mechanics of bond.

Consider a reinforcing bar that spans the deformable length of a
structural column, anchored in its footing. An important difference may
be traced in the state of stress occurring in the two regions along the
bar: within the anchorage stress is controlled by the mechanics of bond,
as described by the field equations (Eq. (4)). On the other hand, within
the shear span, it is the prevailing notion that bar stress is controlled by
flexural theory; i.e. the requirement of plane sections remaining plane
at any cross section relates bar strains to flexural moment and axial load
through cross sectional equilibrium. This however can be incompatible
with the requirements of Eq. (4). The concept of tension stiffening is
used in order to settle this potential conflict between the two antag-
onistic mechanisms for control of reinforcement strains: a certain
nontrivial length ℓDο is needed, measured from the face of the crack
toward the un-cracked part of the member until bar strain compatibility
with the surrounding concrete cover may be claimed. Thus, the field
equations of bond control the segment ℓDο, whereas the classical theory
of bending controls the remaining length. The region over the shear
span of a flexural member where bar stresses are controlled by the
mechanics of bond (Eq. (4)) rather than the mechanics of flexure, is
referred to hereon as a “disturbed” region, thereby assigning to this
length an alternative interpretation from that used to explain shear
dominated response in frame members [25]. At the same time this al-
ternative significance of the disturbed region underscores the interac-
tion between bond and shear strength [26]. Clearly, as flexural cracking
propagates the disturbed zone extends and may spread over the entire
length of the member.

3. Disturbed region on shear span of a flexural member

It was mentioned earlier that spread of inelastic strains occurs on
both sides of a critical section (i.e. at the base of a column). The process
of inelastic strain penetration in the anchorage of a reinforcing bar has
already been demonstrated in Tastani and Pantazopoulou [19,20]. This
section is dedicated to solving the same problem in the other side of the
critical section, that is, over the disturbed region along the shear span of
a column. Here the problem is different from that of the anchorage in
the type of boundary conditions that may be enforced for the governing
differential equation (Eq. (4)). The bond-slip law has the same multi-
linear envelope as in the case of an anchorage, however the bond
strength value, fbmax, is a function of the available transverse re-
inforcement.

3.1. Evaluation of disturbed length on crack initiation

For the stage prior to the occurrence of flexural cracking along the
length of the member, the bar strain is estimated from the flexural
analysis of the un-cracked column cross section (i.e. from the moment-
curvature analysis, Fig. 3a):

=ε x ϕ x y( ) ( )·fl s na
gr
, (5a)

This is expressed explicitly as:
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where M(x), N (+ for compression) and ϕ(x) are the flexural moment,
axial load and flexural curvature acting on the member section at dis-
tance x from the support, Ec is the elastic modulus of concrete, Ig and Ag

are the moment of inertia and the uncracked cross section area, h is the
section height and Ccov is the clear cover (Fig. 3a). Parameters yc,g and
ys,nagr are the distances of the centroid of tension reinforcement to the
centroid of the uncracked cross-section and to the neutral axis location,
respectively (Fig. 3a). The distance to the neutral axis changes sig-
nificantly from the initial linear elastic state y ,s na

gr
, to the cracked state of

a cross section, ys na
cr
, . Generally, the position of the neutral axis may be

estimated from equilibrium requirements, both in the uncracked cross
sections as well as at the crack locations assuming “plane sections re-
main plane”. From the flexural analysis perspective, when the flexural
moment M(x) exceeds the cracking moment, Mcr [=(fct+N/Ag)× Ig/
(0.5h), where fct the tensile strength of concrete, N is the axial load
–compression positive-, Ag the cross section area of column, Ig the gross
moment of inertia and h the cross section height] even by a small
amount, then the member may be considered cracked in the neigh-
borhood of x. Although a large region may satisfy this definition,
however, cracks i occur at discrete locations xcr,i. Thus, if an analysis of
the cracked cross section is available (based on plane section hypoth-
esis), the tension reinforcement strains ε(xcr,i) that occur in the crack
locations may be calculated from:

=ε x ϕ x y( ) ( )·cr i cr i s na
cr

, , , (6)

In the segment between successive cracks where moment exceeds
the cracking value, bar strains cannot be estimated from flexural ana-
lysis as prescribed by Eq. (6). Owing to reinforcement slip, the degree of
strain compatibility between steel and concrete in these locations is not
well understood, as would be required by the “plane-sections remain
plane” assumption, nor can the concrete be considered inert as would
happen in a fully cracked tension zone. Because it takes some distance
from a crack location before the reinforcement may fully engage its
concrete cover in tension again so as to satisfy the conditions of strain
compatibility, Eq. (6) is invalid even in the region immediately adjacent
to the last flexural crack in the shear span, although the flexural mo-
ment is below the cracking limit in that region. Bar strain over cracked
segments of the member may be estimated from solution of Eq. (4). To
address all the possible exceptions to the validity of the flexural re-
quirement stated by Eqs. (5) and (6), here the term “undisturbed” is
used as a qualifier to “un-cracked” in order to refer to sections that also
satisfy “the plane sections remaining plane” compatibility requirement.
As a corollary, where strains are obtained from solution of the bond
equation, the region is “disturbed”.

The flexural moment at a distance x from the face of the support is
estimated with reference to the flexural moment at the support, Mo (εo
is the bar tension strain at x=0, Fig. 3b):

= −M x M x L( ) ·(1 / )o s (7)

As the sequence of crack formation is critical for the occurrence of
disturbed regions and for the problem of strain penetration that will be
subsequently addressed, in the present discussion the static problem
represented by Eq. (7) will be solved for a gradually increasing value of
the support moment, Mo. It is assumed that the characteristic flexural
resistance curve (moment-curvature) of any cross section along the
shear span (i.e. the moment – curvature and moment – bar strain dia-
gram) is available from classical flexural analysis (plane-sections) for
the entire range of response.

For a member with continuous primary reinforcement over the
shear span, Ls, the moment distribution that follows Eq. (7) will cause
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first cracking at the face of the support (xcr,1 = 0, Fig. 3b). Upon
cracking of the tension zone the bar strain experiences a significant
jump to maintain equilibrium (Fig. 3c). For example, if the cracked
section stiffness is about 1/3 of the uncracked value, the bar strain at
the critical section is expected to increase threefold by the mere oc-
currence of the crack even though the moment change from the un-
cracked to the cracked stage may be imperceptible. Thus suddenly the
whole region adjacent to the cracked location becomes “disturbed”.
Over the length of the disturbed region, ℓD1 (Fig. 3b) the reinforcement
strain is described by the solution of the bond equation [19,20]:

= + =−ε x C e C e ω f E D s( ) · · , where, [4 /( · · )]ωx ωx
b
max

s b1 2 1
0.5 (8)

The solution of Eq. (8) is valid provided bond is in the elastic range
(ascending branch in the bond slip law, Fig. 2b). Before the creation of a
second crack, the following conditions characterize the end of the dis-
turbed region at x= ℓD1:

(a) the slope of the bar strain distribution, ψ= dε(x)/dx, obtained from
differentiation of Eq. (8), matches that of the strain diagram as
would be obtained from Eqs. (5b) and (7):

= → − + = −
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(b) the bar strain ε(ℓD1) satisfies both Eqs. (5b) and (8):
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2
ℓ
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Given the axial load N and the bar strain at the support
ε(x=0)= εo the corresponding moment Mo is obtained from the mo-
ment-curvature analysis of the cracked section. A boundary condition of
Eq. (8) is,

= = + =ε x C C ε( 0) o1 2 (9c)

Unknowns of the system of Eq. (9) are, the disturbed length ℓD1
(Fig. 3b), and the coefficients C1 and C2. In an algorithm developed to
solve Eq. (9) numerically, the controlling parameter is εo; required
input includes the axial load, N, shear span Ls, the bond-slip char-
acteristic property ω (Eq. (8)), and the member material and cross
sectional properties. Coefficients C1, C2 are obtained from (9a) and
(9b):
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The value of ℓD1 is determined by solving Eq. (9c) after substitution
of C1, C2.

3.2. Formation of additional flexural cracks in the shear span

Increasing the reinforcement strain value at the critical section, εo,
corresponds to a higher flexural moment Mo at the support. Based on
Eq. (7), the flexural moments exceed the cracking moment up to a
distance xcr from the support: = −x L M M·(1 / )cr s cr o . But the position of
the next crack is not necessarily at xcr; rather, it is controlled by tension
stiffening of the reinforcement.

(a) To determine if the next crack forms within ℓD1, (Fig. 3b) the force
transferred through bond to the concrete cover (i.e. EsAs1[εo-ε(x)])
is compared with the tensile resistance of the effective area of
concrete cover engaged in tension (i.e. fctAc.eff, [27])

− ⩾ = + −E A f A ε ε x A b C D A[( · )/( · )]·[ ( )] 1, ·(2 )s s ct c eff o c eff cov b s1 . . 1 (11)

where As1 is the area of the tensile reinforcement, Ac.eff is the area of
concrete effectively engaged in tension (shaded area around As1 in
Fig. 3a), fct is the tensile concrete strength, and b is the width of the
section of the column (Fig. 3a). The lowest value of x= xcr,2< ℓD1 that
satisfies Eq. (11) determines the location of the next crack; otherwise no
further cracking is possible within ℓD1 as long as the reinforcement
remains elastic.

(b) Alternatively, the next possible crack location, xcr,2 ≥ ℓD1 in the
undisturbed region (Fig. 3b) is also evaluated from Eq. (5b) (here,
εs.cr= εc.cr× ycg/(0.5h) is the strain at the level of
reinforcement–Fig. 3a- when the concrete strain on the tension
surface of the column is equal to the cracking limit εc.cr= fct/Ec, in
the order of 0.00015):

= − − = ⇒

= − −

ε x ε x L N E A ε x

L ε ε N E A ε

( ) (1 / ) /( · )

·[1 / /( )]
el
o

s c g s cr cr

s s cr el
o

c g el
o

. ,2

. (12)

Slip in the disturbed region is obtained from integration of bar
strains (from x=0 to x= ℓD1).

= − +−s x
ω

C e C e C( ) 1 ( · · )ωx ωx
1 2 (13)

The constant of integration, C is obtained from the requirement of
compatibility of strains in the concrete and reinforcement at the end of
the disturbed zone, x= ℓD1 where the local slip is zero (s(ℓD1)= 0).

After localization of the second crack at xcr,2, the next step of the
solution is the determination of the new disturbed region ℓD2 (along
with the updated values of the constants C1, C2). Term ℓD2 initiates from
the crack location xcr,2 and extends towards the span until the re-
quirements of slope coincidence and continuity are reached, at co-
ordinate xcr,2 + ℓD2 in Eqs. (9a) and (9b) (Fig. 4a). In using the closed
form expression of Eq. (8), the value of x is substituted by the value x-

Fig. 3. Definition of terms: (a) Cross sectional flexural analysis. (b) Bar strain distribution along the shear span Ls: stage prior to cracking (red); response into the disturbed region ℓD1
(blue). (c) Moment - bar strain diagram. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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xcr,2; this solution is valid for x ⊆ [xcr,2, xcr,2+ ℓD2]). The bar strain εcr,2
at the location of the second crack (Fig. 4a) is the outcome of the
flexural analysis of the cracked section and corresponds to the moment
at that location according to Eq. (7) for x= xcr,2. In the search of the
new disturbed region, an additional requirement is that slip at the lo-
cation xcr,2 should not exceed the limit s1 in Eq. (13) (where x is sub-
stituted by x-xcr,2), securing that bond is still elastic inside ℓD2 (Fig. 4a).

This process is repeated following the gradual increase in the value
of bar strain εo at the support, until no additional primary cracks can be
identified. This point corresponds to stabilization of cracking, and it
generally occurs at a strain value in the critical section that is less than
the strain at yielding, εostbl < εy. From this stage and until failure of the
structural member, for the sake of simplicity of the mathematical pro-
blem, the so called total disturbed region ℓDο is defined as the total dis-
tance measured from the support to the end of the disturbed region of
the last (and remotest) crack that was formed prior to stabilization, ℓDn
(Fig. 4b). Since bond development controls the total disturbed region,
from that point onwards the field equations (Eq. (4)) are solved in ℓDο
ignoring the presence of intermediate discrete cracks or the flexural
moment requirements, since the “plane sections” assumption is not
valid anywhere over this entire region; upon further increase of the bar
strain at the support, the ℓDo length may increase further as the dis-
turbed zone penetrates towards the tip of the cantilever column.

Following cracking stabilization and beyond yielding of the steel bar
(εο> εy), the yielded segment of the disturbed region undergoes si-
multaneous degradation of bond. Thus, of the total length ℓDο, there is a
segment lr where yielding penetrates and spreads with increasing value
of εο (Fig. 4b). Owing to bar yielding, bar strains increase over lr
without a commensurate increase of stress: this means that bond must
have degraded to zero as a consequence of Eq. (4a), since df/dx=0 and
thus fb=0. This segment may be considered debonded. Even if the
yield-plateau is neglected, and the bar stress-strain diagram is con-
sidered bilinear with some hardening (Fig. 2a), it is clear that the small
hardening slope may only be supported by the residual bond strength –
in other words in order for a bar to yield, it must have slipped beyond
the limit s2 in the bond-slip law (Fig. 2b). Limit s2 is not an intrinsic
property of the bar–concrete interface as it is generally assumed by
Design Codes [28], but rather, it depends on the available bonded
length [19].

Solution for the distributions of strain, slip and the state of bond
over the disturbed region ℓDο of the shear span of a column under lateral
sway follows that obtained when considering yield penetration in a bar

anchorage [19]. Here, the disturbed region ℓDο comprises the sequence
of the following segments (Fig. 4b): the yield penetration length lr
(immediately adjacent to the support), the bond plastification length lp
(i.e. the length where the bar is elastic but bond is constant and equal to
the value at the plateau of the bond slip law, fbmax); Bar axial stress and
bond stress are elastic in the tail length of the disturbed region. The
solution of the bond equations for the different segments is given below:

⩽ ⩽ = − =x l ε x ε
f

E D
x f x fFor 0 : ( )

4
; ( )r o

b
res

sh b
b b

res

(14a)

= + − + → = = + +s x s l x ε x ε x s s l ε ε( ) 0.5( )[ ( ) ] 0: 0.5 ·( )r y o r o y2 2

(14b)

⩽ ⩽ + = − − =l x l l ε x ε
f

E D
x l f x fFor : ( )

4
( ); ( )r r p y

b
max

s b
r b b

max

(15a)

= + + − + → = = + +s x s l l x ε x ε x l s s l ε ε( ) 0.5( )[ ( ) ] : 0.5 ·( )r p el r p y el1
3

2 1
3
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E D
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4
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b
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s b
p
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(15c)

+ ⩽ ⩽ = +
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− − − − −l l x ε x C e C e f x
f

s
s x

For ℓ : ( ) · · ; ( )

· ( )

r p Do t
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t
ω x l l

b

b
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1
( )

2
( )

1

p r p r

(16a)

= − +− − − − −s x
ω

C e C e C( ) 1 ( · · )t
ω x l l

t
ω x l l

t1
( )

2
( )p r p r

(16b)

Unknowns ℓDo, C1t, C2t and the constant of integration Ct are ob-
tained from boundary conditions at x= ℓDo (namely slope and strain
continuity and slip compatibility - zero relative displacement) between
strain distributions obtained from the bond development equation and
from flexural analysis. Therefore reinforcement slip is: at x= lr+ lp, s
(x)= s1; at x= ℓDo, s(ℓDo)= 0 (see Fig. 4b). The following system of
boundary conditions is therefore established:

(a) Slope continuity of the strain distributions at x= ℓDo:

− + = − =− − − − −ω C e C e ε L ε M y E I·( · · ) ·1/ , ( · )/( · )t
ω l l

t
ω l l

el
o

s el
o

o cg c g1
(ℓ )

2
(ℓ )Do r p Do r p

(17a)

(b) Continuity of strains at x= ℓDo:

Fig. 4. (a) Disturbed region ℓD2 after formation of the 2nd crack. (b) Total disturbed region ℓDo after stabilization of cracking.
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= + = − −− − − − −ε C e C e ε L N E A(ℓ ) · · ·(1 ℓ / ) /( · )Do t
ω l l

t
ω l l

el
o

Do s c g1
(ℓ )

2
(ℓ )Do r p Do r p

(17b)

(c) Continuity of slip at x= lr + lp:

+ = − + =s l l
ω

C C C s·( ) 1 ( )r p t t t1 2 1 (17c)

(d) Continuity of strain at x= lr + lp:

+ = + =ε l l C C ε·( )r p t t el1 2
3 (17d)

The length of yield penetration lr (Eq. (18)) may be estimated
considering the continuity of strain at x= lr (in Eq. (14a)).

= −l ε ε E D
f

( )·
4r o y
sh b

b
res (18)

Eq. (18) for the yield penetration length (which defines the plastic
hinge length) has two interesting implications: first, it is a strain-based
criterion for the spread of yielding in the shear span, as opposed to the
stress-based definition given by Eq. (2b); there the coefficient a refers to
the flexural overstrength normalized by the yielding moment. A second
more subtle point is the observation that the plastic hinge length is
influenced by several parameters indirectly, through the determining
effect that these have on fbres. For example the presence of axial load on
a member that undergoes cyclic displacement reversals weakens the
cover over a larger portion of the shear span length leading to cover
delamination due to excessive compressive strains; upon reversal of
load, the crushed cover cannot support significant bond action for the
reinforcement when it is stressed in tension, leading to a reduced value
of fbres, which in turn causes increased penetration depth for columns
carrying a higher axial load; this is consistent with experimental reports
[15,16,30].

The following algorithm (Fig. 5) is established in order to define the
locations of primary cracks and bar strain, slip and bond distribution
along the shear span Ls of a laterally loaded reinforced concrete column
as well as the yield penetration length:

Initial Data: Using standard section analysis obtain M-ϕ and M-ε
diagrams (or better a unified diagram M-ϕ-ε) given N for the typical
section of the reinforced concrete column studied.
1st Step: Select value of bar strain, εo(1) = εo, after crack formation
at the support (Eq. (5), (7)).
2nd Step: Find the corresponding moment, Mo at the support, from
moment-bar strain diagram. Solve for the length of the disturbed
region ℓD1 emanating from the first crack (Eqs. 8–10).
3rd Step: Increase strain at critical section to εo

(2)= εo
(1)+ Δεo.

Find the location xcr,2 of the second crack. Check if second crack will
occur: (a) inside ℓD1 according to Eq. (11), or (b) in the undisturbed
region Ls- ℓD1, according to Eq. (12).
4th Step: (a) If next crack forms within ℓD1, repeat Step 3 for
εo

(3)= εo
(2)+ Δεo. (b) Otherwise, find the new disturbed region ℓD2

that extends beyond xcr,2.
5th Step: Find total disturbed length, ℓDo= xcr,2+ ℓD2.
6th Step: Solve for ε(x), s(x), f(x), fb(x) for xcr,2≤ x≤ℓDo from Eqs.
((8), (9), (10), (13)) (Fig. 4a). In this phase of the solution and up to
stabilization of cracking elastic bond is assumed in ℓD2 (Fig. 4a).
Thus the distributions can be described by the Eq. (16) after sub-
stituting lr=0 and lp=0. For Ls-ℓDo<x < Ls, (elastic column) Eq.
((5), (7)) are used.
7th Step: Repeat steps 2–6 for εo(i) = εo

(i-1)+ Δεo until stabilization
of cracking (i.e., no more primary cracks can develop: =ε εo

stbl
o

i( )).
Final length of disturbed zone is obtained from the nth increment
using this procedure: ℓDo= xcr,n + ℓDn.
8th Step: Increase εo

(i) = εo
(i-1)+ Δεo> εo

stbl. Solve for one con-
tinuous disturbed region ℓDo ≥ xcr,n + ℓDn allowing for bond

plastification and debonding as well as bar yielding (anchorage so-
lution) up to either (a) εo exhausting the ultimate strain of the M-ε
diagram, or (b) ℓDo exceeding the available development length of
the bar in the shear span, taken here as (Ls+ hhook), where hhook
(Fig. 1e) refers to the bent length of a hooked anchorage (according
with [28] the contribution of a hook to the strength of an anchored
bar is 50Abfbmax, which corresponds to an additional anchored
length, ΔLb= hhook=12.5Db). If (b) controls, continue beyond that
point for higher strains using the anchorage solution [19] for the
entire length ℓDo.
9th Step: The last converged value of lr in the shear span (Fig. 4b) is
added to the corresponding yield penetration length into the an-
chorage [19] resulting in the definition of the total plastic hinge

Fig. 5. Flow-chart of the established algorithm for the definition of the bond state in the
disturbed region of the shear span as well as of the plastic hinge length.
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length ℓpl.

4. Results

In the context of the present paper, the length of plastic hinge is by
definition the length of yield penetration (thus ℓpl= lr), occurring from
the critical section towards both the shear span and the anchorage;
physically it refers to the extent of the region where nonlinear re-
inforcing strains occur, and it may be used to calculate the inelastic
rotation capacity of the column. The solution algorithm developed is
applied in this section in order to establish the parametric sensitivities
of the estimated plastic hinge to the important design parameters. It is
also used to correlate the behavior of the plastic hinge spread in three
published column tests that were conducted to illustrate the effect of
axial load on the length of the plastic hinge region [29,30].

4.1. Application examples

The three column experiments studied in the paper are specimens
U3 [29], S17-3UT and S24-4UT [30]. Column specimens were tested as
cantilevers, simulating half a clear column length under lateral sway
such as would occur during an earthquake with cross section detailing
as shown in Fig. 6a. Column U3 is analyzed in detail and results are
summarized in Table 1, whereas results of S17-3UT and S24-4UT are
directly included in Table 1 for easy correlation.

4.1.1. Column U3 [29]
The specimen had a 350mm square cross section reinforced with

eight evenly distributed longitudinal reinforcing bars of Db=25mm
and stirrups of Db,st=10mm spaced at 75mm o.c. (on centers) and
clear cover Ccov=32.5mm (i.e., d=350–45= 305mm), see Fig. 6a.
Concrete strength was fc′=34.8MPa. Longitudinal steel yielding

strength was 430MPa with a 5% hardening. Stirrup yield strength was
470MPa.

Column shear span was Ls=1.0m and the axial load ratio [ν=N/
(fc′bd)] was 0.16. Fig. 6b plots the unified M-ϕ-ε relationship obtained
for this axial load using fiber section analysis with the modified Kent &
Park model for confined concrete [31]; a Hognestad-type parabola was
used to model the compression stress-strain response of unconfined
concrete [32]. A bilinear stress-strain curve with 5% hardening was
used to model longitudinal reinforcement (Fig. 2a). Bond strength was
taken equal to fbmax=1.25√fc′ (7.4MPa) for the anchorage (anchorage
with hook with equivalent straight length of Lb=812mm [28]). For
the shear span the bond strength is calculated using a frictional model
[33] that accounts for separate contributions of the cover concrete and
stirrups according to:

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

f
μ

πD
C f

A f
N S

2
2 · 0.33

·b
max fr

b
cov ct

st y st

b

,

(19)

where Nb is the number of tension bars (or pairs of tension spliced bars
if reinforcement is spliced) laterally restrained by the transverse pres-
sure exerted in the form of confinement by the stirrups, Ccov is the clear
concrete cover, Ast is the area of stirrup legs enclosing the Nb bars (i.e.,
the total area of legs crossing the splitting plane), S is the stirrup spa-
cing along the member length, μfr is coefficient of friction, fct is the
concrete tensile strength and fy,st is the yielding strength of stirrups.
Therefore the maximum bond strength for the shear span is 7.2MPa
when considering the contribution of the cover, which drops to
2.75MPa after cover delamination (for the present example: μfr=1,
fct=0.33√fc′, Nb=3). Due to the reversed cyclic nature of the dis-
placement history, cover on the tension reinforcement is assumed to
have delaminated or split if during the opposite direction of loading the
compressive strain has attained the limit value of 0.003; this is used also
in all other examples considered herein. The residual bond strength fbres
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is defined as 20% of the maximum bond strength and parameter
s1= 0.2mm; s2 mainly depends on the anchorage length which is equal
to the shear span if the latter is transmitted to total disturbed region.
For the present problem, s2 is found equal to 0.5mm at the ultimate
state of reinforcement (see later in Fig. 8b).

After evaluation of the process of crack formation according with
the proposed algorithm, the resulting distribution of strains is illu-
strated in Fig. 7. Note that stabilization of cracking occurred before
yielding of the tensile bars (just after formation of the 4th crack). Ul-
timate strain corresponded to a disturbed region extending over the
entire length of the column shear span including an equivalent addi-
tional length equal to 12.5Db (313mm) – thus ℓDomax= Ls+12.5Db – in
order to account for the end detail of reinforcement at the tip of the
column being welded on a steel plate (this additional length is the
anchorage length equivalent of a T-headed anchorage according to [28]
– here this is a conservative estimate).

From Fig. 7 it is seen that the yield penetration length over the shear
span at the last step of the calculation was 319mm (0.91 h or 0.32Ls)
whereas the corresponding pullout slip was suspan(x=0)=2.36mm
(Fig. 8b). When including the yield penetration in the footing as is in-
tended in the formal definition of ℓpl (Eq. (2b)) - the total plastic hinge
length is 632mm. (Note that the yield penetration length inside the
footing is 313mm or 0.029Dbfy and the corresponding slip is
suanch(x=0)=2.33mm, Fig. 8b.) Fig. 8a compares this value (i.e.
632mm) with the empirical estimates of Eqs. (3a), (3b); the easy esti-
mate of 0.5d is also noted. Also included is the result of the classical
definition of plastic hinge length (1−My/Mu)Ls. For comparison it is
noted (red dashed line in Fig. 8a) that cover delamination was extended
over 520mm measured from the face of the support, according with the
experimental report of specimen U3 [29]. Fig. 8b presents the slip
distribution lengthwise the bar reinforcement, from where values at
critical section are used next for the calculation of drift components.

The rotation components θslip and θf occurring at the critical section
of the specimen at yielding and in the ultimate limit state are estimated
according with Eqs. (1) and (2) by also adding the contribution from the
anchorage [19]; here the theoretical ultimate point corresponds to the
attainment of the maximum supportable disturbed length,
ℓDo

max= Ls+12.5Db=1313mm as described in the preceding. Thus,
Eq. (1) is modified as follows:
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The values sy(x=0) and su(x=0) are the contributions to slip at the
base of the column resulting from pullout from the anchorage as well as
from the shear span. For the analytical estimations of specimen U3, the
compression zone depth was (Fig. 6b, εu=0.0095 and ϕu=4.7×10−5

mm−1) cx=103mm (i.e., d−0.4cx=305–41=264mm) and from Eq.
(20) the drift capacity owing to pullout slip was estimated as: θuslip=2.36/
264+2.33/264=0.018 rad. Using ℓr=319mm, the ultimate rotation of
the column due to flexure was: θuf= θyf + θplf where θyf=ϕy

⋅Ls/3
(see also Eq. (2b)): θuf=1/3⋅0.000013⋅1000+(0.000047−0.000013)
⋅319=0.015 rad. Term θuslip accounts for 55% of the total rotation capacity
of the RC column (θu= θuslip+ θuf=0.018+0.015=0.033 rad). The
experimental reported tip displacement at maximum moment (268 kN m)
was 35mm corresponding to a rotation of 0.035 rad.

4.1.2. Column S17-3UT [30]
The geometry of the column is summarized in Table 1 and depicted

in Fig. 6a. Τhe main bars were welded on a steel plate for the appli-
cation of the load at the tip of the column. This was taken into account
in the analysis by including a length of 12.5Db (=199mm) as effective
extension of the available development length in the shear span. Fig. 6b
depicts the results of the moment – curvature - strain analysis. It isTa
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evident that cover spalling occurs relatively early at a stage corre-
sponding to bar yielding. For the shear span the maximum and the post-
cover delamination values for bond strength were estimated from Eq.
(19) as fb w cov, /

max =11.49MPa and fb wo cov, /
max =5.40MPa (indices w/cov and

wo/cov correspond to the inclusion or not of the cover contribution).
The process of detecting the crack formation and the corresponding
strain distribution for the column are presented in Fig. 9. Stabilization
of cracking occurred before yielding of the tensile bars. Moreover, after
spalling of concrete cover, the contribution of the latter to bond
strength was neglected (thus fbmax= fb wo cov, /

max =5.40MPa).
As is evident from Fig. 9d the maximum sustained yield penetration

length based on the proposed procedure is 271mm (0.66 h or 0.09Ls) in
the shear span and inside the footing it is 177mm (or 0.022Dbfy). Re-
ported damage extended over a distance of 450mm from the base of the
column (see experimental reference, red dashed line in Fig. 8a). Fig. 8a
presents the correlation of the analytical estimation with the empirical
results and Fig. 8b the analytically estimated slip distribution length-
wise along the bar reinforcement at ultimate strain.

The rotation of the column at ultimate moment due to slippage θuslip (Eq.
(20)) is θuslip=2.30/311+1.5/311=0.012 rad whereas the ultimate ro-
tation of the column due to flexure (using ℓr=271mm) is: θuflex=1/3
⋅0.000017⋅3049+(0.000059−0.000017) ⋅271=0.029 rad. Thus the
total drift is estimated as 0.041 rad. The experimental curvature corre-
sponding to 20% drop in lateral load capacity (this point was defined on the
lateral load lateral displacement envelope after correction for the P-Δ ef-
fects), was 7×10−5 mm−1 (at the 6th level of cycling) and the associated
drift was 0.032 rad.

4.1.3. Column S24-4UT [30]
Table 1 and Fig. 6a depict the geometric characteristics of the

column specimen. As in the previous example, the effective develop-
ment length of the longitudinal bars in the shear span was extended by
12.5Db (= 278mm) to account for welding of main reinforcement on a
steel plate attached to the point load setup. Fig. 6b plots the calculated
moment – curvature - strain diagram, indicating also the onset of cover

delamination (beyond that point bond strength is reduced due to
elimination of the cover contribution in Eq. (19)). For the shear span
fbmax was fb w cov, /

max =8.85MPa and fb wo cov, /
max =2.0MPa (with and without

the cover contribution). The process of crack formation and the re-
sulting bar strain distributions as calculated using the proposed algo-
rithm are shown in Fig. 10.

From Fig. 10 it is shown that yield penetration length at maximum
strain value εu=0.013 is lr=301mm (=0.5 h or 0.1Ls) in the shear
span. Adding the length of yield penetration in the footing (i.e. 80mm
or 0.01Dbfy) the plastic hinge length is estimated at 380mm. Fig. 8a
presents the correlation of the analytical estimation with the empirical
results and the reported damage into the shear span, extending up to a
distance of 350mm. Fig. 8b shows the estimated slip distribution
lengthwise the bar reinforcement at ultimate strain.

Column rotation capacity at the ultimate moment was estimated as
follows: from slip, θuslip=3.52/463+0.98/463= 0.01 rad and due to
flexure θuflex=1/3 0.000007⋅3049+ (0.000039− 0.000007)
⋅301=0.017 rad (in total 0.027 rad). The experimental reported drift
ratio at to 20% net loss of lateral load strength was 0.033 rad (after
correction of the result for the P-Δ effect); therefore the experimental
total rotation of 0.033 rad was approximated adequately by the esti-
mated analytical value of 0.027.

5. Parametric investigation

The parametric sensitivity of the proposed solution for the plastic
hinge length is investigated in this section considering as a point of
reference specimen U3 examined in the preceding section. Parameters
considered, reference values, and ranges of parameters thereof are
listed in Table 2; in each case one parameter is varied at a time keeping
the reference values for all other variables (so the possible interaction
effects between variables have not been considered in conducting the
sensitivity analysis). Consistent with the original definition of the
plastic hinge length (Eq. (2b)) the strain hardening ratio of the re-
inforcement Esh effectively increases the plastic hinge length (Table 2).

Fig. 7. For column U3 (a), (b), (c) tensile bar strain distributions along the anchorage (blue curves) and the shear span (cyan-red-green curves). Location of estimated successive cracks is
indicated until crack stabilization. (d) Strain state of reinforcement at ultimate, where ℓpl is calculated. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Similarly, a reduction of the residual bond strength fbres leads to further
increase of the plastic hinge length (Table 2). It should be noted that the
yield penetration length in the anchorage is included in the plastic
hinge length.

The location of the cracks is affected by variable ω that defines the
elastic bond according to Eq. (8). Decreasing the slip limit s1 and in-
creasing the value of average bond strength fbmax both led to con-
solidation of the cracks closer to the critical section at the base of the
column (before stabilization of cracking). In all analytical cases pre-
sented in Table 2 the first crack appears always at the base of the
column (xcr,1 = 0), whereas in some of the experiments severe cracking
occurred about 50mm above the footing owing to the restraint pro-
vided by the footing, particularly when the drift history was applied by
means of rotating that block while keeping the tip of the cantilever
specimen stationary (e.g. [30]).

In the previous section three specimens with different aspect ratios
(Ls/d) and axial load ratios [ν=N/(fcbd)] have been considered. The
corresponding values for (Ls/d, ν) were, (3, 0.16), (7, 0.5), and (5, 0.2)
respectively. Based on [30] the two parameters have a simultaneous
effect on the extent of ℓpl, and a degree of interaction (i.e., the effect of
Ls/d is pronounced only in the presence of high axial load ratio)
(Tables 2, 3). To illustrate the sensitivity of the proposed approach in
reproducing the experimental trend, a second reference point is in-
troduced in the parametric study, namely the case of specimen U3 but
with an axial load ratio of ν=0.5 (Table 3).

The mechanism by which the axial load ratio affects the damaged
region is by accelerating and spreading delamination of the cover in the
compression zone of the laterally swaying column. This was already
evident in the M-ϕ-ε relationships of Fig. 6. Due to displacement re-
versals in the applied load history, compression and tension zones are
sequentially interchanged. Thus, when the region with delaminated
cover is placed in tension the bond strength of tension reinforcement is
reduced significantly (the first term in the right hand side of Eq. (19) is
seriously compromised) with commensurate implications on fbres also.
From Eq. (18) it is evident that a larger ℓpl is expected under these

conditions. To study this parametric trend consider the cross section of
Fig. 11a. Cover delamination is assumed to occur when the compressive
strain at the level of compression reinforcement reaches the limit of
0.004 (term ξ= cx/d is the normalized compression zone and ξ ′= d2/d
defines the position of the compression reinforcement as per the ex-
treme fiber). In this case, from cross section analysis, the strain of the
tensile reinforcement εo is given by Eq. (21).

=
−
− ′

ε
ξ

ξ ξ
0.004·

1
o

(21)

For the needs of the parametric investigation the relationship be-
tween ν and εo is established using experimental evidence: the column
test series conducted by Watson and Park [16] included specimens with
various axial load ratios ranging from ν=0.1 to 0.6. Based on the re-
ported test results, the relation between axial load v and normalized
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Table 2
Parametric Investigation – Properties similar to specimen U3 (units: mm, MPa).

Parameter ν=N/
(fc′bd)= 0.15

ν=N/
(fc′bd)= 0.3

ν=N/
(fc′bd)= 0.5

Plastic Hinge
Length

1.8 h 1.3 h 0.9 h

Parameter fbmax=3 fbmax=5 fbmax=7
Plastic Hinge

Length
3.1 h 2.2 h 1.8 h

Parameter fbres=1 fbres=2 fbres=3
Plastic Hinge

Length
2.2 h 1.6 h 1.3 h

Parameter Esh=1%Es Esh=2.5%Es Esh=5%Es
Plastic Hinge

Length
0.4 h 0.9 h 1.8 h

Parameter Ls=2h Ls=3h Ls=4h
Plastic Hinge

Length
1.8 h 1.8 h 1.8 h

Parameter Db=18
Plastic Hinge

Length
1.4 h
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compression zone depth ξ is estimated as, ξ=0.25v+0.07 (Fig. 11b).
Thus, given the applied axial load v, the normalized compression zone
depth ξ of the cross section is estimated; then, the corresponding strain
in the tension reinforcement at the critical section, εo, is obtained from
Eq. (21). This is substituted in Eq. (18) to define the yield penetration
length into the shear span, using different intensities of average residual
bond strength depending on the magnitude of axial load (lower residual
bond strength for higher axial load to reflect the effect of delaminated
cover over a broader region). This procedure is visualized in the

combined diagram of Fig. 11c, where curves of v - εo (grey curve) and lr/
d - εo (black lines, where the thicker the curve the higher the fbres is) are
simultaneously plotted. Note that the horizontal grey dashed line drawn
at the upper part of Fig. 11c defines the available column aspect ratio,
Ls/d which serves as the ultimate limit for possible penetration. This
diagram may be used to illustrate two aspects of the parametric sensi-
tivity of the problem: a) the increase of axial load for example from 0.2
to 0.4 (following the red arrow) results in reduction of the strain ca-
pacity of the cross section (from 0.05 to 0.027) along with diminishing
of the fbres (crossing from the thicker to the thinner curve, i.e. from 4 to
near 1MPa) as well as an increase of the extent of the plastic hinge
length in the shear span (i.e. from 1.1 to 2.3d, where d is the effective
depth of the cross section, see the red dashed horizontal lines). (b) the
unified diagram v - lr/d - εo can be used in design: given the axial load
and the aspect ratio of the member, the strain capacity of the cross
section and the corresponding plastic hinge length are uniquely de-
fined, leading to proper assessment of the members’ available de-
formation capacity. The extent and intensity of damage may be effec-
tively reduced through confinement as a higher value of the residual
bond strength may be supported (see the black dashed paths in
Fig. 11c).

6. Conclusions

Yield penetration occurs from the critical section towards both the
shear span and the support of columns; physically it refers to the extent
of the nonlinear region and determines the pullout slip measured at the

.
Fig. 11. (a) Strain state of cross section at
cover crushing. (b) The influence of axial
load on compression zone based on data
from [16]. (c) A unified diagram v – lr/d −
εo for the influence of axial load, residual
bond strength and tensile bar strain on
yield penetration length into shear span.

Table 3
Parametric Investigation – Axial load ratio equal to 0.5 (units: mm, MPa).

Ideal reference case ν=N/(fc′bd) = 0.5; all other characteristics are those of U3

Parameter fbmax= 3 fbmax= 5 fbmax= 7
Plastic Hinge

Length
1.6 h 1.1 h 0.9 h

Parameter fbres = 1 fbres = 2 fbres= 3
Plastic Hinge

Length
1.1 h 0.8 h 0.7 h

Parameter Esh= 1%Es Esh= 2.5%Es Esh= 5%Es
Plastic Hinge

Length
0.1 h 0.4 h 0.9 h

Parameter Ls=2h Ls=3h Ls=4h
Plastic Hinge

Length
0.9 h 0.9 h 0.9 h

Parameter Db=18
Plastic Hinge

Length
0.7 h
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critical section. Contrary to the fixed design values adopted by codes of
assessment, the yield penetration length is actually the only consistent
definition of the notion of the plastic hinge length, whereas the latter
determines the contribution of pullout rotation to column drift and
column stiffness. In order to establish the plastic hinge length in a
manner consistent to the above definition, this paper pursued the ex-
plicit solution of the field equations of bond over the shear span of a
column. Through this approach, the bar strain distributions and the
extent of yield penetration from the yielding cross section towards the
shear span were resolved and calculated analytically. By obtaining this
solution a consistent definition of plastic hinge length is established, by
reference to the state of reinforcement strain (replacing the stress based
definition used previously). The true parametric sensitivities of this
design variable for practical use in seismic assessment of existing
structures are illustrated. The numerical results show good agreement
with the experimental evidence and are consistent with the experi-
mental trends supported by test databases, confirming that the plastic
hinge length is controlled by the residual bond that may be mobilized
along the yielded reinforcement.
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